

PADRONIZAÇÃO ABSOLUTA DE RADIONUCLÍDEOS PELO MÉTODO TDCR DE CINTILAÇÃO LÍQUIDA

Paulo Alberto Lima da Cruz

Tese de Doutorado apresentada ao Programa de Pós-graduação em Engenharia Nuclear, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Doutor em Engenharia Nuclear.

Orientador(es): Ricardo Tadeu Lopes Luiz Tauhata

Rio de Janeiro Dezembro de 2013

PADRONIZAÇÃO ABSOLUTA DE RADIONUCLÍDEOS PELO MÉTODO TDCR DE CINTILAÇÃO LÍQUIDA

Paulo Alberto Lima da Cruz

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIAS EM ENGENHARIA NUCLEAR.

Examinada por:

Prof. Ricardo Tadeu Lopes, D.Sc.

Prof. Luiz Tauhata, D.Sc. Prof. Ademir Xavier da Silva, D.Sc. Prof. Akira Iwahara, D.Sc. unil

Prof. Edgar Francisco Oliveira de Jesus, D.Sc.

Dr. Philippe Cassette, Ph.D.

RIO DE JANEIRO, RJ - BRASIL DEZEMBRO DE 2013 Cruz, Paulo Alberto Lima da

Padronização Absoluta de Radionuclídeos pelo Método TDCR de Cintilação Líquida / Paulo Alberto Lima da Cruz. – Rio de Janeiro: UFRJ/COPPE, 2013.

XV, 102 p.: il.; 29,7 cm.

Orientadores: Ricardo Tadeu Lopes

Luiz Tauhata

Tese (doutorado) – UFRJ/ COPPE/ Programa de Engenharia Nuclear, 2013.

Referências Bibliográficas: p.93-97.

 Método TDCR. 2. Padronização Absoluta. 3. Cintilação Líquida. 4. Radiofármacos. I. Lopes, Ricardo Tadeu et al. II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Nuclear. III. Título

Aos meus filhos, Fernando Smith Cruz e Diego Guimarães Cruz.

À minha companheira, Ivone Viana Smith.

AGRADECIMENTOS

Ao Instituto de Radioproteção e Dosimetria (IRD), pela oportunidade de realização deste trabalho.

Aos professores Ricardo Tadeu Lopes e Luiz Tauhata pela orientação, confiança, dedicação, apoio e paciência na realização deste trabalho.

À International Atomic Energy Agency (AIEA) por aprovar e viabilizar o meu treinamento na metrologia de radionuclídeos do LNHB/França.

Ao Laboratoire National Henri Becquerel (LNHB/França) pela aceitação de meu treinamento e cooperação científica.

Ao Dr. Philippe Cassette (LNHB/França) pela cooperação, amizade e dedicação na transmissão dos conhecimentos do método TDCR de cintilação líquída.

Às funcionárias e funcionários da secretaria do Programa de Engenharia Nuclear da COPPE, pelo apoio na área acadêmica.

Ao Diretor de Radioproteção e Segurança da CNEN, Ivan Salati, pelo apoio, estímulo e amizade.

Ao ex-diretor do Instituto de Radioproteção e Dosimetria, Luiz Fernando Conti, pela minha liberação para o Doutorado na COPPE/UFRJ.

À Diretora do Instituto de Radioproteção e Dosimetria, Dejanira, pelo apoio.

Às secretárias da Diretoria do Instituto de Radioproteção e Dosimetria, Norma e Marli, pelo pronto atendimento.

Ao vice-diretor do IRD e Chefe do LNMRI, José Ubiratan Delgado, pela confiança.

Ao colega e amigo Antonio Eduardo pelo inestimável apoio, paciência e amizade.

Ao amigo Roberto Poledna pela colaboração no trabalho em todas as discussões e todas as vezes que precisei de ajuda no laboratório.

Aos companheiros do SEMRA do Laboratório Nacional de Metrologia das Radiações Ionizantes (LNMRI), por me proporcionarem um ambiente favorável à execução deste trabalho. São eles: Akira, Antônio Eduardo, Adilson, Baiana e seu Zé, Carlos, Denise, Eduardo, Jamir, José Ubiratan, Luiz Tauhata, Margareth, Maura, Nadjara, Otávio, Poledna, Ronaldo, Régio e Vanessa.

À Maria Antonieta Di Prinzio, que mesmo estando distante em função da aposentadoria, continua sendo minha referência, pela amizade e profissionalismo.

Aos meus companheiros e companheiras das boas lutas sindicais Antônio Eduardo, Alex Silva, João Leonel, Jussara Rosa, Lindinalva Viegas, Rosângela Seda, Shirley Maia e Vânia Espinheira pelo apoio, carinho e amizade.

Aos servidores da Engenharia Mecânica do IRD, pelo pronto atendimento. São eles: Adilson, Ailson, Carlos Roberto, Fabrício, Gilmara, Jair, Luiz Aurélio, Moacyr, Nilton e Sergio.

Ao colega Raimundo Nonato Portela pelas frequentes manutenções elétricas, essenciais à funcionalidade dos laboratórios.

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Doutor em Ciências (D.Sc.)

PADRONIZAÇÃO ABSOLUTA DE RADIONUCLÍDEOS PELO MÉTODO TDCR DE CINTILAÇÃO LÍQUIDA

Paulo Alberto Lima da Cruz Dezembro/2013

Orientadores: Ricardo Tadeu Lopes Luiz Tauhata

Programa: Engenharia Nuclear

A implementação do método da razão entre as contagens de coincidências tripla e duplas (TDCR) utilizando a técnica de cintilação líquida, no Laboratório Nacional de Metrologia das Radiações Ionizantes/Instituto de Radioproteção e Dosimetria, LNMRI/IRD, foi demonstrada por meio da padronização absoluta de soluções de radionuclídeos que decaem por emissão beta, (elétrons e pósitrons), captura eletrônica e por gama com a emissão de elétrons de conversão. Foram selecionados os radionuclídeos ³H, ¹⁴C, ⁹⁹Tc, ⁶⁸Ge/⁶⁸Ga e ^{99m}Tc, pela sua importância nos campos da monitoração ambiental e medicina nuclear. A padronização de radiofármacos faz parte do Programa de Garantia da Qualidade na medicina nuclear que o LNMRI está implementando para que os centros produtores do Brasil possam garantir a rastreabilidade ao laboratório nacional. A rastreabilidade das medições realizadas pelo método TDCR para ⁹⁹Tc e ^{99m}Tc à rede internacional de laboratórios de metrologia das radiações ionizantes, foi garantida por meio das comparaçõeschaves internacionais promovidas pelo BIPM. A implementação do sistema TDCR e as padronizações de 68Ge/68Ga e 99mTc também foram realizadas no âmbito da cooperação existente entre o LNMRI e o Laboratoire National Henri Becquerel, da França. Os resultados obtidos na padronização dos radionuclídeos medidos foram validados pelos métodos de medição absoluta já implementados e operacionais no LNMRI: CIEMAT/NIST, Coincidência $4\pi\beta$ (CP)– γ (NaI) e Anticoincidência $4\pi\beta(CL)-\gamma(NaI)$.

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Doctor of Science (D.Sc.)

ABSOLUTE RADIONUCLIDE STANDARDIZATION BY LIQUID SCINTILLATION TDCR METHOD

Paulo Alberto Lima da Cruz

December/2013

Advisors: Ricardo Tadeu Lopes Luiz Tauhata

Departament: Nuclear Engineering

The implementation of the Triple to Double Coincidence Ratio method (TDCR) using the liquid scintillation technique at National Laboratory for Metrology of Ionising Radiation/Institute of Radiation Protection and Dosimetry, was demonstrated by absolute standardization of radionuclide solutions that decays by beta emission (electrons and positrons), electron capture and by gamma with the emission of conversion electrons. The choice of ³H, ¹⁴C, ⁹⁹Tc, ^{99m}Tc and ⁶⁸Ge/⁶⁸Ga was due to the importance of these radionuclides in the fields of environmental monitoring and nuclear medicine. The standardization of radiopharmaceuticals is part of the Quality Assurance in Nuclear Medicine that is being implemented at LNMRI for providing traceability of Brazilian radionuclide manufacturers to the national laboratory. The traceability of measurements performed in this work for ⁹⁹Tc and ^{99m}Tc by TDCR method to the international network of metrology laboratories for ionizing radiation was guaranteed through international key-comparisons promoted by BIPM. The implementation of the TDCR system and the standardization of ⁶⁸Ge/⁶⁸Ga and ^{99m}Tc were also carried out in cooperation between the LNMRI and the Laboratoire National Henri Becquerel, France. The results obtained in the standardization of the measured radionuclides were validated by absolute methods already implemented and operational at LNMRI: CIEMAT/NIST, $4\pi\beta(PC)-\gamma(NaI)$ coincidence and 4π $\beta(LC) - \gamma(NaI)$ anticoincidence.

ÍNDICE

RESUMO

ABSTRA	CT
--------	----

Capítul	Capítulo 1. INTRODUÇÃO					
Capítul	lo 2. REVISÃO BIBLIOGRÁFICA		3			
2.1	2.1 Método TDCR de Cintilação Líquida					
2.2	Padronização de ³ H		4			
2.3	Padronização do ¹⁴ C		5			
2.4	Padronização do ⁹⁹ Tc		6			
2.5	Padronização de ⁶⁸ Ge/ ⁶⁸ Ga		6			
2.6	Padronização do ^{99m} Tc		7			
Capítul	lo 3. FUNDAMENTOS TEÓRICOS		8			
3.1	Decaimento Radioativo		8			
	3.1.1 Coquetéis de cintilação		8			
3.1.2 O processo de cintilação						
	3.1.3 O processo de extinção de luz por i	onização	10			
3.2	Modelo de cálculo do Parâmetro Livr	e ou Figura de Mérito	12			
3.3	Decaimento Radioativo		15			
	3.3.1 Decaimento por emissão de partí	culas beta	15			
	3.3.2 Decaimento por captura eletrônic	a	15			
,	3.3.3 Decaimento emissão gama com o	onversão interna de elétrons	15			
3.4	Eficiência de contagem		16			
,	3.4.1 Eficiência de detecção de nuc	ídeos que decaem por emissão de				
	partículas beta		16			
	3.4.2 Eficiência de detecção de nuclíde	os que decaem por captura eletrônica	19			
3.4.3Interações de fótons20						
3.5 Métodos de cintilação líquida do modelo do Parâmetro Livre 20						

22
24
24
25
26
27
27
27
28
28
20
29
29 29
29 29 30
29 29 30 30
29 29 30 30 30
29 29 30 30 30 31
29 29 30 30 30 31 31
29 29 30 30 30 31 31 31
 29 29 30 30 30 31 31 31
 29 29 30 30 31 31 31 31
 29 29 30 30 31 31 31 31 31 32
 29 29 30 30 31 31 31 31 31 32 32
 29 29 30 30 31 31 31 31 32 32 32
 29 29 30 30 31 31 31 31 32 32 32 33
 29 29 30 30 31 31 31 31 32 32 32 33 34

4.4.4	Fontes radioativas usadas nas padronizações pelos métodos TDCR e				
	CIEMAT/NIST 3				
4.4.5	Ajuste do sistema TDCR3				
4.4.6	Determinação da Concentração de Atividade das soluções de ³ H, ¹⁴ C				
	e ⁹⁹ Tc	34			
4.4.7	Determinação da Concentração de Atividade das soluções de				
	⁶⁸ Ge/ ⁶⁸ Ga e ^{99m} Tc	35			
4.5 Pad	lronização de soluções dos radionuclídeos	36			
4.5.1	Padronização de solução de ³ H	36			
4.5.2	Padronização de solução de ¹⁴ C	37			
4.5.3	Padronização de solução de 99Tc de intercomparação internacional				
	promovida pelo BIPM	38			
4.5.4	Padronização de solução de ⁶⁸ Ge/ ⁶⁸ Ga em cooperação com o				
	LNHB/França	39			
4.5.5	Padronização de solução de 99mTc de intercomparação internacional				
	promovida pelo BIPM, em cooperação com o LNHB/França	40			
4.	5.5.1 Procedimento experimental do BIPM na padronização de				
	solução de ^{99m} Tc	40			
4.	5.5.2 Procedimento experimental do LNMRI na padronização de				
	solução de ^{99m} Tc	41			
4.5.6	Avaliação de incertezas	43			
a 4 1 a b					
Capitulo 5. R	RESULTADOS E DISCUSSÃO	44			
5.1 Pad	lronização de ³ H	44			
5.1.1	Aplicação do teste estatístico de Grubbs (Outlier) às medições e				
	resultados das fontes de ³ H	50			
5.1.2	Determinação da Concentração de Atividade da solução de ³ H	50			
5.1.3	Avaliação das intertezas da padronização da solução de ³ H	50			
5.1.4	Resultados da padronização da solução de ³ H	53			
5.2 Pad	lronização de ¹⁴ C	54			
5.2.1	Aplicação do teste estatístico de Grubbs (Outlier) às medições e				
	resultados das fontes de ¹⁴ C	58			
5.2.2	Determinação da Concentração de Atividade da solução de 14 C	58			

	5.2.3	Avaliação das intertezas da padronização da solução de ¹⁴ C	58
	5.2.4	Resultados da padronização da solução de ¹⁴ C	61
5.3	B Pad	lronização de ⁹⁹ Tc	62
	5.3.1	Aplicação do teste estatístico de Grubbs (Outlier) às medições e	
		resultados das fontes de ⁹⁹ Tc	64
	5.3.2	Determinação da Concentração de Atividade da solução de 99Tc	64
	5.3.3	Avaliação das intertezas da padronização da solução de ⁹⁹ Tc	64
	5.3.4	Resultados da padronização da solução de ⁹⁹ Tc	64
5.4	Pac	Ironização de ⁶⁸ Ge/ ⁶⁸ Ga	67
	5.4.1	Aplicação do teste estatístico de Grubbs (Outlier) às medições e	
		resultados das fontes de ⁶⁸ Ge/ ⁶⁸ Ga	72
	5.4.2	Determinação da Concentração de Atividade da solução de ⁶⁸ Ge/ ⁶⁸ Ga	72
	5.4.3	Avaliação das intertezas da padronização da solução de ⁶⁸ Ge/ ⁶⁸ Ga	73
	5.4.4	Resultados da padronização da solução de ⁶⁸ Ge/ ⁶⁸ Ga	73
5.5	5 Pac	lronização de ^{99m} Tc	75
	5.5.1	Aplicação do teste estatístico de Grubbs (Outlier) às medições e	
		resultados das fontes de ^{99m} Tc	87
	5.5.2	Determinação da Concentração de Atividade da solução de 99mTc	87
	5.5.3	Avaliação das intertezas da padronização da solução de ^{99m} Tc	87
	5.5.4	Resultados da padronização da solução de 99mTc	89
	5.5.5	Resultados da comparação-chave do BIPM	91

Capítulo 6. CONCLUSÕES

92

93

REFERÊNCIAS BIBLIOGRÁFICAS

ANEXO – Artigo "Primary activity standardization of ⁹⁹Tc by three different absolute methods", em publicação pela revista Applied Radiation and Isotopes. 98

ÍNDICE DE FIGURAS

Figura 3.1	Modelo CIEMAT/NIST: diagrama de padronização	21		
Figura 3.2	Modelo do sistema TDCR			
Figura 3.3	Sistema de detecção do TDCR 2			
Figura 3.4	Ajuste da discriminação do ruído no vale do pico do fotoelétron de			
	fotomultiplicadoras	25		
Figura 4.1	Simulação de Monte Carlo para o sistema de detecção do TDCR	32		
Figura 4.2	Eficiência teórica do ³ H	37		
Figura 4.3	Eficiência teórica do ¹⁴ C	38		
Figura 4.4	Eficiência teórica do ⁹⁹ Tc	39		
Figura 4.5	Eficiência teórica do ⁶⁸ Ge/ ⁶⁸ Ga	40		
Figura 4.6	Eficiência teórica de ^{99m} Tc	43		
Figura 5.1	Determinação da Concentração de Atividade de ³ H-17, obtida pelo			
	método TDCR, com o uso de filtros, em Hisafe3	47		
Figura 5.2	Determinação da Concentração de Atividade de ³ H-18, obtida pelo			
	método TDCR, com o uso de filtros, em Ultima Gold	47		
Figura 5.3	Resultados da padronização da solução ³ H-IPL 958-62-4, pelos métodos			
	TDCR e CIEMAT/NIST, em Hisafe3 e Ultima Gold	53		
Figura 5.4.	Concentração de Atividade de fonte ¹⁴ C-06, obtida pelo método TDCR,			
	com uso de filtros, em Hisafe3	55		
Figura 5.5	Resultado da padronização de ¹⁴ C, pelos métodos TDCR e			
	CIEMAT/NIST, em Hisafe3 e Ultima Gold	61		
Figura 5.6	Concentração de Atividade de fonte 99Tc-01, obtida pelo método			
	TDCR, com uso de filtros, em Hisafe3	63		
Figura 5.7	Resultados da padronização da solução 99 Tc-IPL/UK, pelos métodos			
	TDCR, Coincidência $4\pi\beta(CP)-\gamma(NaI)$ e de Anticoincidência			
	$4\pi\beta$ (CL)– γ (NaI), em Hisafe3	66		
Figura 5.8	Esquema simplificado do decaimento de ⁶⁸ Ge/ ⁶⁸ Ga	67		
Figura 5.9	Esquema KLM simplificado do decaimento de ⁶⁸ Ge/ ⁶⁸ Ga	68		
Figura 5.10	Concentração de Atividade da fonte ⁶⁸ Ge/ ⁶⁸ Ga-03, obtida pelo método			
	TDCR, com uso de filtros, em Hisafe3	72		

Figura 5.11	Resultados da padronização de solução ⁶⁸ Ge/ ⁶⁸ Ga-Eckert & Ziegler,					
	pelos métodos de Espectrometria gama, Anticoincidência					
	$4\pi \beta$ (CL)– γ (NaI) e TDCR	74				
Figura 5.12	Esquema simplificado de decaimento do ⁹⁹ Mo/ ^{99m} Tc	75				
Figura 5.13	Espectro Compton de emissão gama do ^{99m} Tc	76				
Figura 5.14	Concentração de Atividade de fonte de solução de 99mTc, obtida pelo					
	método TDCR, com o uso de filtros, em Hisafe3	81				
Figura 5.15	Resultados da padronização da solução de 99mTc da comparação-chave					
	do BIPM, pelos métodos de Anticoincidência $4\pi\beta$ (CL)- γ (NaI), TDCR e					
	CIEMAT/NIST	90				
Figura 5.16	Grau de equivalência do resultado obtido pelo LNMRI com o					
	KCRV/BIPM para ^{99m} Tc	91				

LISTA DE SÍMBOLOS E ABREVIATURAS

CNEN	Comissão Nacional de Energia Nuclear
IRD	Instituto de Radioproteção e Dosimetria
IEN	Instituto de Engenharia Nuclear
IPEN	Instituto de Pesquisas Energéticas e Nucleares
CDTN	Centro de Desenvolvimento de Tecnologia Nuclear
CRCN-NE	Centro Regional de Ciências Nucleares das Regiões Norte-Nordeste
LNMRI	Laboratório Nacional de Metrologia das Radiações Ionizantes
BIPM	Bureau International des Poids et Mesures
SIR	International Reference System
CCRI	Comité Consultatif pour les Rayonnements Ionisants
ICRM	International Committee on Radionuclide Metrology
LNHB	Laboratoire National Henri Becquerel
CIEMAT	Centro de Investigaciones Energéticas Medioambientales y Tecnológicas
NIST	National Institute of Standards and Technology
IAEA	International Atomic Energy Agency
PET	Positron Emission Tomography
TDCR	Triple-to Double Coincidence Ratio
KCRV	Key Comparison Reference Value
SIRTI	Transfer Instrument of the International Reference System

O Método TDCR de Cintilação Líquida é especialmente aplicado à padronização absoluta da Concentração de Atividade de soluções de radionuclídeos emissores beta e daqueles que decaem por captura eletronica e por conversão interna, de forma direta, pela dissolução da solução do radionuclídeo em coquetel de substâncias cintiladoras.

A implementação desse método no LNMRI/IRD em cooperação com o LNHB/França teve como objetivo atender a crescente demanda no país por radionuclíeos padronizados em sistemas metrologicamente rastreados à rede internacional de metrologia das radiações ionizantes.

Com esse objetivo, o método TDCR foi implementado e aplicado à padronização de ³H, ¹⁴C, ⁹⁹Tc, ⁶⁸Ge/⁶⁸Ga e ^{99m}Tc, preenchendo um amplo espectro de radionuclídeos que decaem por emissão de elétrons e pósitrons, captura eletrônica e meta-estável com emissão gama e conversão interna de elétrons. Ao mesmo tempo, contituiu-se uma contribuição importante quanto à padronização de radionuclídeos usados na medicina nuclear, nos casos de ⁶⁸Ge/⁶⁸Ga e ^{99m}Tc. A medicina nuclear de radiodiagnótico no Brasil e no mundo utiliza especialmente o radiofármaco de ^{99m}Tc, o que torna essencial a padronização desse radionuclídeo por métodos absolutos.

Nesse sentido, o BIPM está realizando comparação-chave de solução de ^{99m}Tc, com a participação de laboratórios de radionuclídeos de países dos vários continentes, de forma a estabelecer a rastreabilidade das medições à rede internacional de metrologia. O LNMRI/IRD/Brasil foi incluído nessa comparação-chave.

De outra forma, a Tomografia por Emissão de Pósitrons (PET) é uma das mais importantes técnicas de imagem existente, em contínua expansão, que precisa de padrões de referência para calibração de equipamentos como ativímetros e gama câmaras. A implementação do TDCR teve esse objetivo de atuar na padronização absoluta de soluções de ⁶⁸Ge/⁶⁸Ga, que recentemente, vem sendo usado como fonte substituta o ¹⁸F para a calibração dos serviços de medicina nuclear. Atualmente, o ¹⁸F é produzido no âmbito da CNEN, pelo IPEN em São Paulo, IEN no Rio de Janeiro, CRCN-NE em Recife e CDTN em Belo Horizonte.

O desenvolvimento de novos radiofármacos abre perspectivas para a medicina nuclear no mundo. Nesse sentido, a revista APPLIED RADIATION AND ISOTOPES

(2013) [1] publicou uma edição especial dedicada integralmente ao uso do ⁶⁸Ga como radiofármaco, obtido do gerador ⁶⁸Ge/⁶⁸Ga, em procedimento similar ao do ^{99m}Tc do gerador ⁹⁹Mo/^{99m}Tc, o que motiva o aperfeiçoamento e o desenvolvimento de métodos de padronização desse e de outros radionuclídeos correlatos pela rede internacional de metrologia.

2.1 Método TDCR de Cintilação Líquida

O método da razão entre coincidências tripla e duplas é um método absoluto em cintilação líquida desenvolvido para a padronização de solução de radionuclídeos emissores beta e de captura eletrônica em termos da grandeza Atividade.

O método se baseia no modelo estatístico do Parâmetro Livre da distribuição dos fótons de cintilação e suas probabilidades de detecção, em sistema de contagem constituído de três fotomultiplicadoras. O modelo leva em consideração as correções da perda de linearidade da emissão de luz, produzida pelo fenômeno da extinção (Quenching) do processo de ionização gerado pela interação das particulas com as moléculas do meio químico.

Os precursores do modelo do Parâmetro Livre foram V. KOLAROV, Y. LE GALLIC AND R. VATIN [2] que em 1970 desenvolveram um sistema de cintilação líquida com duas fotomultiplicadoras trabalhando em soma e coincidência. Esses autores propuseram um método absoluto para a padronização de emissores beta baseado num modelo simples de eficiência. K. POCHWALSKI AND T. RADOSZEWSKI (1979) [3] apresentaram o desenvolvimento de um modelo para a determinação da taxa de desintegração em cintilação líquida usando a relação TDCR. Pochwalski construiu um detector com três fotomultiplicadoras no Radioisotope Centre, Swierk/Polônia e no Laboratorio Nacional Henri Becquerel (LNHB) em Saclay, França. Esta cooperação entre os dois laboratórios deu impulso ao desenvolvimento definitivo do TDCR.

A integração de cálculos teóricos de eficiência de contagem baseados na emissão de radiação de radionuclideos em comparação com dados experimentais foi descrita por R. BRODA AND T. POCHWALSKI (1982) [4]. R. BRODA ET AL, (1988) [5], A. G. MALONDA AND B. M. COURSEY (1988) [6], Novos aperfeiçoamentos do sistema foram realizados por P. CASSETTE AND R. VATIN (1992) [7], R. BRODA AND K. POCHWALSKI (1992) [8]. O modelo do Parâmetro Livre, baseado na distribuição estatística de Poisson para o cálculo da eficiência de contagem para emissores beta e de captura eletrônica, em sistemas de detecção com múltiplas fotomultiplicadoras, foi descrito e consagrado por A. G. MALONDA (1995) [9].

O método TDCR passou a ser uma realidade a partir do desenvolvimento dos códigos computacionais por R. BRODA ET AL. (2000) [10] e da unidade eletrônica de processamento de pulsos gerados pelas fotomultiplicadoras e de tempo morto extendido MAC3 por J. BOUCHARD AND P. CASSETTE (2000) [11].

Na atualidade, o método TDCR está implementado em laboratórios de radionuclídeos de vários paises, a partir especialmente da cooperação com o LNHB/França: P. CASSETTE AND J. BOUCHARD (2003) [12], B. E. ZIMMERMAN, R. COLLIE AND J. T. CESSNA (2004) [13], K. B. LEE ET AL (2004) [14], P. ARENILLAS AND P. CASSETTE (2006) [15], M.J.QUIN AND P. CASSETTE (2008) [16], O. N⁻⁻AHLE, K. KOSSERT AND P. CASSETTE (2010) [17], L. C. JOHANSSON AND J. P. SEPHTON (2010) [18], descrevem o processo de implementação no LNHB/França, NIST/EUA, KRISS (Coreia) CNEA (Argentina), ANSTO (Austrália), PTB (Alemanha) e NPL (Reino Unido).

Por conta de sua consistência nas medições e dos níveis minimizados de incerteza obtidos, o método TDCR foi aceito pelo BIPM como método de referência para padronização absoluta dos radionuclídeos pela técnica de cintilação líquida. O método TDCR tem sido amplamente utilizado na padronização absoluta de soluções de nuclídeos como ³H, ¹⁴C, ⁶³Ni, ⁵⁵Fe, ⁹⁰Sr/⁹⁰Y, ⁵⁴Mn, ¹²⁹I, ¹³⁹Ce e ²⁰⁴Tl.

2.2 Padronização de ³H

Z. YAOZI (1992) [19] realizou a padronização de solução de ³H, com medições em sistema de cintilação líquida constituído de duas fotomultiplicadoras, incluindo correções devido à energia de excitação atômica e da extinção das amostras. Uma incerteza total de 1,2% foi estimada para o método.

O. N[•]AHLE, K. KOSSERT AND P. CASSETTE (2010) [17], realizaram a padronização de uma solução de ³H de comparação-chave internacional promovida pelo BIPM para a validação da implementação do sistema TDCR no Physikalisch-Technische Bundesanstalt (PTB,). A Concentração de Atividade obtida foi de 36,69 kBq/g com incerteza de 0,94%, que convergiu ao resultado final da comparação-chave de 36,69 kBq/g, incerteza de 0,69% (k = 2).

C. IVAN, A. M. CRISTINA, WATJEN, P. CASSETTE, M. SAHAGIA, A. ANTOHE AND E. L. GRIGORESCU (2010) [20] participaram de uma comparaçãochave internacional promovida pelo CCRI/|BIPM para a padronização de solução de ³H usando um sistema TDCR convencional e um protótipo de um novo sistema de seis fotomultiplicadoras, com resultados compatíveis dentro de uma dispersão de 0,4 %.entre os dois sistemas.

W. YONGLE, L. JUNCHENG, L. JIACHENG, X. WENJUN, Y. SHUNHE, G. XIAOQING, C. XILIN, Y. YUANDI AND Y. DAQING (2012) [21], realizaram padronização de uma fonte de ³H fornecida pelo NIST. As medições realizadas no sistema TDCR resultaram em atividade de 342.8 ± 2.4 kBq/g que concorda com a Concentração de Atividade original da solução, em 1,4 % de diferença.

2.3 Padronização de ¹⁴C

J. S. LOUREIRO (2000) [22] realizou a padronização de ¹⁴C a partir de intercomparação com o CIEMAT/Espanha pelo método CIEMAT/NIST de cintilação líquida, com resultados convergentes em 0,56% (k = 2) nos valores da Concentração de Atividade.

Á. SZORÉNYI, A. ZSINKA, J. VÁGVOLGYI (1996) [23] realizaram a padronização de ¹⁴C e outros radionuclídeos beta puro e de captura electrônica por um sistema de cintilação líquida desenvolvido pelo National Office of Measures (ONH/Hungria) com incerteza de 0,52 % (k = 2) e resultados convergentes com outros métodos de coincidência.

D. SMITH, J. L. MAKEPEACE AND D. H. WOODS (1987) [24], usaram três métodos para a padronização de ¹⁴C em solução de ácido tartárico, dos quais, dois métodos de coincidência $4\pi\beta$ - γ com um traçador de ⁶⁰Co e com correção pelo fator de forma do espectro beta, e no sistema proporcional a gás interno, em que o ¹⁴C foi convertido em dióxido de carbono gasoso. Os resultados das Concentrações de Atividade determinadas convergiram (176,7 - 175,9 - 175,7 kBq/g) dentro das incertezas de cada método usado (0,25 %, 0,39 % e 0,73 %) (k = 2).

K. B. LEE ET AL (2004) [14] usaram o método TDCR para a padronização de ¹⁴C variando a eficiência de detecção por meio de desfocalização do fotocatodo das fotomultimplicadoras com a aplicação de alta tensão e o uso de agente químico extintor de luz, e obtiveram resultados da Concentração de Atividade muito convergentes, comprovando que o modelo independe da técnica de variação da eficiência.

2.4 Padronização de ⁹⁹Tc

B. M. COURSEY ET AL, (1984) [25] padronizaram ⁹⁹Tc pela comparação da resposta da altura de pulso de um contador de cintilação líquida com aqueles de outros

padrões de radionuclídeos emissores β : ³H, ¹⁴C e ⁶⁰Co. Os resultados obtidos concordaram dentro de 0,32 % de incerteza (k = 2).

L. L. PEREZ ET AL, (2010) [26] investigaram a padronização do ⁹⁹Tc, realizada pelos métodos absolutos Anticoincidência $4\pi \beta$ (LS)- γ (NaI) e TDCR, para que o NIST pudesse certificar as soluções padrões deste nuclídeo. Os resultados das medições e comparação desses métodos absolutos, com incertezas da ordem de 0,7 % e 0,3 % (k = 2), respectivamente, confirmaram as medições realizadas por espectrometria gama e cintilação líquida.

B. E. ZIMMERMAN ET AL, (2010) [27], organizaram a comparação internacional de solução de ⁹⁹Tc, no âmbito do Grupo de Cintilação Líquida do ICRM, para avaliar as incertezas envolvidas na aplicação de diferentes metodologias, incluindo os códigos computacionais de cálculo de eficiência aplicados no método TDCR de cintilação líquida. Os resultados do estudo indicaram que, em geral, os códigos computacionais que são usados para a análise de dados do TDCR são similares e de acordo com outras técnicas.

2.5 Padronização de ⁶⁸Ge/⁶⁸Ga

E. SCHONFELD, U. SCHOTZIG, E. GUNTHER AND H. SCHRADER (1994) [28] usaram os métodos de espectrometria gama, coincidência $4\pi\beta$ - γ , câmara de ionização e CIEMAT/NIST de cintilação líquida para a determinação dos parâmetros do decaimento de ⁶⁸Ge/⁶⁸Ga e da Concentração de Atividade. Os resultados obtidos convergiram ao limite das incertezas dos métodos, assim como os valores dos parâmetros do decaimento, comparados com outros métodos da literatura.

E. L. GRIGORESCU ET AL, (2004) [29] padronizaram uma solução de 68 Ge/ 68 Ga pelo método $4\pi\beta$ - γ e chamaram a atenção para a perda por volatilização do 68 Ge na etapa de preparação das fontes sólidas.

B. E. ZIMMERMAN ET AL, em 2008 [30] padronizaram uma solução de 68 Ge/ 68 Ga pelos métodos de Coinciência $4\pi\beta$ - γ , Anticoincidência $4\pi\beta$ - γ -(LTAC), TDCR, CIEMAT/NIST. Câmara de Ionização e Espectrometria Gama, cujos resultados apresentaram incertezas coerentes e minimizadas entre os métodos de cintilação líquida, TDCR e CIEMAT/NIST, mas com divergências em relação aos demais métodos, o que mostrou a necessidade de novas padronizações desses radionuclídeos em equilíbrio secular.

B. E. ZIMMERMAN and J. T. CESSNA em 2010 [31] desenvolveram uma metodologia para usar fontes de ⁶⁸Ge/⁶⁸Ga como padrões substitutos do ¹⁸F na calibração dos ativímetros. Os padrões de ¹⁸F e ⁶⁸Ge/⁶⁸Ga foram feitos em seringa tendo como base resina de epóxi.

2.6 Padronização de ^{99m}Tc

A. G. MALONDA e B. M. COURSEY (1987) [32] realizaram a padronização do 99m Tc por cintilação líquida usando ³H como traçador para obter a curva de eficiência versus extinção da amostra, com medição em cintilador líquido comercial de duas fotomultiplicadoras em coincidência. A curva teórica de figura de mérito versus eficiência de detecção foi obtida por um código computacional, a partir dos dados do decaimento do 99m Tc. Os resultados mostraram consistência na aplicação do código computacional, mas a incerteza foi apreciável, na faixa de 3,4 % (k = 2).

J. M. LEE, K. B. LEE, S. H. LEE, T. S. PARK (2012) [33], utilizaram o método absoluto $4\pi\beta$ - γ para a padronização ^{99m}Tc, por conta da participação do laboratório KRISS/República da Coréia comparação promovida pelo BIPM por meio do instrumento de transferência do SIRTI/BIPM. O resultado obtido mostrou-se consistente com o valor de referencia, com incerteza de 0,14 %. (k = 2).

3.1 Cintilação Líquida

O processo de cintilação líquida ocorre quando uma solução de radionuclídeo é dissolvida em coquetel de substâncias cintiladoras e a energia cinética das partículas é transferida ao meio, com a consequente emissão de luz. Uma fração da energia cinética das partículas é efetivamente convertida em luz, sendo que a maior parte é dissipada pelos processos internos não radiativos e calor.

Os fótons de luz são captados nos fotocatodos de fotomultiplicadoras, produzindo elétrons, os quais são multiplicados nos dinodos. Esse processo gera sinal eletrônico com amplitude suficiente para ser processado na cadeia eletrônica.

G. F. KNOLL (1989) [34] descreve o principal processo de cintilação de luz: a fluorescência que surge da transição entre os níveis de energia da estrutura da molécula orgânica de substâncias cintiladoras que possuem anel aromático com ligações duplas alternadas e eletrons π , com a emissão de luz na ordem de nanosegundos.

3.1.1 Coquetéis de Cintilação

Na atualidade, os coquetéis de cintilação comerciais têm composição química que permite a dissolução de soluções radioativas em água, constituindo-se numa solução homogênea. Os mais comuns, como Hisafe3 e Ultima Gold, são compostos de um solvente DIN (Di-Isopropil-Naftaleno) ou Tolueno com um soluto fluorescente como o 2,5 Dipheniloxazole e uma substância tensoativa. A tabela 3.1 apresenta a densidade e a composição estequiométrica dos componentes dos referidos coquetéis de cintilação fornecidos pela empresa comercial Perkin Elmer.

3.1.2. O processo de cintilação

J. B. BIRKS (1965) [35], [36] e (1970) [37], [38], estudou o mecanismo de interação das partículas com o meio químico do cintillador orgânico. Neste, as partículas carregadas emitidas no seio de líquido cintilador interagem com as moléculas do meio, perdem energia cinética e algumas moléculas experimentam transformações,

tais como ionização, formação de radicais livres, excitação ou ruptura em fragmentos neutros ou ionizados.

Elemento	С	Н	Ν	0	Р	S	Na	Densidade	Z/A	РМ
Coquetel								(g/cm ³)		
Hisafe3	19,17	28,12	0,02	2,88	0,06	0,00	0,00	0,99	0,5458	306,70
Ultima Gold	16,81	24,54	0,04	1,52	0,11	0,02	0,02	0,98	0,5459	255,76
Ultima Gold XR	18,11	29,80	0,04	2,83	0,11	0,03	0,03	0,99	0,5476	297,98
Ultima Gold AB	18,67	28,49	0,01	2,53	0,01	0,00	0,00	0,98	0,5485	293,47
Ultima Gold LLT	18,57	28,43	0,01	2,56	0,01	0,00	0,00	0,98	0,5486	292,68
Insta-Gel Plus	18,53	30,93	0,01	3,90	0,00	0,00	0,00	0,95	0,549	315,71
Hionic-Fluor	10,83	18,77	0,08	1,97	0,18	0,04	0,04	0,95	0,5449	188,87

Tabela 3.1 Composição estequiométrica dos coquetéis de cintilação líquida.

As moléculas ionizadas e excitadas, dependendo de sua concentração, originarão diferentes tipos de reações de decomposição, neutralização e formação de radicais livres, principalmente, ou também ocasionarão certos processos fisicos, tais como fluorencência, emissão de raios X, migração ou transferência de energia e de-excitação não radiativa. A maior parte da energia cinética das partículas se degradará em energia térmica e só uma fração desta gerará fótons.

O processo básico de cintilação líquida consiste em converter a energia do decaimento nuclear em fótons de luz. A intensidade de fótons é diretamente proporcional à energia original do decaimento nuclear liberada no coquetel de cintilação. Quanto mais elevada a energia, maior a intensidade de luz resultante.

Os componentes presentes na amostra radioativa podem absorver parcela significativa da energia do decaimento ou dos fótons produzidos pelas moléculas excitadas do coquetel de cintilação. Isto causa o fenòmeno denominado "extinção" que resulta normalmente da presença de componentes químicos no coquetel de cintilação, substâncias coloridas da própria amostra e do processo de ionização.

A extinção química é causada por substâncias na amostra que absorvem a energia do decaimento nuclear no processo de cintilação e provoca o decréscimo da intensidade de luz a ser captada pelas fotomultiplicadoras. Essa extinção é especialmente crítica quanto se trata de nuclídeos emissores beta de baixa energia, como o ³H e aqueles que decaem por captura eletrônica e por conversão interna de elétrons.

3.1.3 O processo de extinção de luz por ionização

A extinção por ionização está ligada às moléculas excitadas do solvente e se manifesta naquelas partes do líquido onde a concentração local de moléculas excitadas é elevada. Refere-se à redução na intensidade de fótons de luz, como resultado da ionização causada pela radiação na sua trajetória no solvente.

Como descrito por J. B. BIRKS (1951) [39] e A. G. MALONDA (1995) [9], o rendimento de fluorescência no cintilador líquido é uma função não linear da energia da partícula e a não linearidade aumenta com o poder de frenamento ou poder de ionização da partícula. Consequemente, uma partícula beta de menor energia causará maior extinção por ionização do que aquela de maior energia.

A fluorescência específica ou número de fótons produzidos por uma partícula em sua trajetória, dL/dx, é definido por:

$$\frac{dL}{dx} = \frac{\eta_0 \frac{dE}{dx}}{1 + kB \frac{dE}{dx}}$$
(3.1)

 η_0 é o numero de fótons de flurescencia emitidos por unidade energia.

dE/dx é o poder de frenamento do cintilador para uma particula beta de energia E, em unidade de MeV.cm⁻¹ ou MeV.cm²g⁻¹.

B(dE/dx) representa o número de centros de extinção produzidos por unidade de distancia.

 $k = fator de Birks ou o fator de extinção, em unidade de cm.MeV^{-1} ou g.MeV^{-1}cm^{-2}$.

A fluorescência específica, na ausencia de ionização:

$$\frac{dL}{dx} = \eta_0 \frac{dE}{dx}$$
(3.2)

 $(1 + kBdE/dx)^{-1}$ é o fator de redução devido à ionização e kB é o parâmetro de ionização.

Integrando a equação anterior:

$$L = \eta_0 \int_0^E \left(\frac{dE}{dx}\right) dx = \eta_0 E$$
(3.3)

 $\eta_0 = L/E$ é o fator de mérito do cintilador quando (dE/dx) tende a zero.

Na versão de A. G. MALONDA,

$$L(E) = \eta_0 \int_0^E \left(\frac{dE}{dx}\right) dx = \eta_0 EQ(E)$$
(3.4)

$$Q(E) = \frac{1}{E} \int_0^E \left(\frac{dE}{dx}\right) dx = \eta_0 E$$
(3.5)

O fator de mérito do cintilador,

$$\eta(E) = \frac{L(E)}{E} = \eta_0 Q(E)$$
(3.6)

Esta expressão é de grande importância, pois permite decompor o fator de mérito em dois termos: um independente da energia e outro em função da energia, mas admensional. Nesse caso, Q(E) é a função de ionização.

Os valores de kB que oferecem uma melhor concordância entre os resultados da eficiência de contagem, foram determinados por A. G. MALONDA AND B. M. COURSEY (1987) [6] e o valor mais usual é 0,0075 cm.MeV⁻¹, mas esse valor depende de outros fatores, como a energia e as condições esperimentais utilizadas.

A. G. MALONDA and E. G. TORAÑO (1981) [40} apresentaram as expressões matemáticas usadas para encontrar o fator de ionização Q(E), que são obtidas a partir da integração de Q(E) e das tabelas de M. J. BERGER AND STEPHEN M. SELTZER (1964) [41]:

Para E >10 keV

$$Q(E) = 1 - 0,9624E^{-0,5457}$$
(3.7)

Para 0,1 < E < 10 keV

$$Q(E) = 0,1253LnE + 0,4339 \tag{3.8}$$

LOS ARCOS ET AL., (1987) [42] introduziram uma nova expressão:

$$Q(E) = \frac{A + BlogE + Clog^2E}{1 + DlogE + log^2E}$$
(3.9)

A= 0,357478, B = 0,459577, C = 0,159905, D = 0,0977557, F = 0,21882

3.2. O modelo de cálculo do Parâmetro Livre ou Figura de Mérito

A. G. MALONDA (1995) [9] descreveu o modelo do Parâmetro Livre para a padronização de soluções de radionuclídeos. O modelo do Parâmetro Livre é resultante da cooperação dos centros de pesquisas de radionuclídeos do CIEMAT/Espanha e NIST/EUA, que desenvolveram um modelo aplicado à padronização de radionuclídeos com o objetivo de reduzir as incertezas de medição e converter o procedimento em um método de referência em cintilação líquida: o método semi-empírico CIEMAT/NIST, baseado no modelo do Parâmetro Livre.

A eficiência de contagem na cintilação líquida é em geral inferior a 100 %, fundamentalmente devido à probabilidade de não detecção das fotomultiplicadoras e a existência de extinção na amostra.

A probabilidade de não detecção se deve à baixa eficiência na transformação luminosa da energia cinética da partícula que excita o cintilador e ao reduzido rendimento quântico da fotomultiplicadora e, traduz-se no fato de que as partículas com baixa energia podem ser incapazes de produzir um fotoelétron no fotocatodo, portanto, não sendo contadas, principalmente em sistema com duas ou mais fotomultplicadoras trabalhando em coincidência, uma vez que a luz produzida por um evento se reparte igualmente entre as diferentes fotomultiplicadoras e a condição de coincidência requer que cada uma delas produza pelo menos um fotoelétron.

Por outro lado, a extinção da amostra produz uma diminuição do número de fótons que chegam ao fotocatodo das fotomultiplicadoras.

A essas condições é que se aplica o modelo do Parâmetro Livre, que se refere à quantidade de energia efetiva necessária para criar um fotoelétron no fotocatodo das fotomultiplicadoras.

O termo energia efetiva refere-se à energia depositada pela partícula corrigida pela extinção devido à ionização. O Parâmetro Livre é um conceito que independe da

energia da partícula que interage com o liquido cintilador e engloba todas as perdas de energia que tem lugar no processo de detecção.

De acordo com M. F. L'ANNUNZIATA (2003) [43], a distribuição de Poisson descreve um processo randômico, em que probabilidade de um determinado evento é constante e pequena. No caso do decaimento radioativo, quatro aspectos são preenchidos: 1) todos os núcleos radioativos tem a mesma probabilidade para um dado período de tempo; 2) o processo de decaimento de um núcleo não é afetado pelo decaimento de outros núcleos; 3) o número total de núcleos e os intervalos de tempo de medições são suficientemente elevados, assim como, a meia-vida dos núcleos é longa comparada com o pulso de detecção. Consequentemente, o evento de decaimento ocorre num período continuo de tempo t.

Segundo G. F. KNOLL (1989) [34] a distribuição de Poisson é assimétrica e a sua forma depende do parâmetro μ , que é um valor real maior do que zero, mas é centrada exatamente no valor médio.

Para A. G. MALONDA (1995) [9], que introduziu o termo Parâmetro Livre, o modelo pressupõe que a resposta do fotocatodo segue a lei estatística de Poisson. Assim, se um elétron com energia E é absorvido pelo cintilador, pela distribuição de Poisson, fótons são emitidos com um valor médio m, que é função de E, e a probabilidade de emissão dos fótons para este valor médio m(E) será:

$$P(x/m) = \frac{m^x e^{-m}}{x!} \tag{3.10}$$

No sistema de detecção de cintilação líquida, os fótons são distribuidos randomicamente dentro da câmara ótica do contador e pode criar fotoelétrons nos tubos fotomultiplicadores com uma probabilidade total de v.

A resultante estatistica do número de fotoelétrons criados é também uma distribuição de Poisson com valor médio vm e a probabilidade de emissão de γ fotoelétrons para um valor medio m(E) será:

$$P(y/vm) = \frac{(vm)^{y}e^{-vm}}{y!}$$
(3.11)

Nesse caso, a probabilidade de detecção é o complemento da probabilidade da não detecção. Como a probabilidade de não detecção corresponde à probabilidade de geração de zero fotoelétron quando um valor médio m é esperado, então a eficiência de detecção será:

$$\varepsilon = 1 - P(0) = 1 - \frac{(vm)^0 e^{-vm}}{0!} = 1 - e^{-vm}$$
 (3.12)

Portanto, a eficiência de detecção é uma função do Parâmetro Livre vm, expresso pelo número médio de fotoelétrons produzidos depois da absorção da energia E.

A expressão acima permite calcular a eficiência de contagem para amostras monoenergéticas de energia E, quando o Parâmetro Livre é v e o sistema de detecção é composto apenas por uma fotomultiplicadora.

No sistema TDCR que trabalha com três fotomultiplicadoras em coincidência, a eficiência de contagem para as coincidências duplas será:

$$\varepsilon = \left(1 - e^{-\frac{\nu m}{3}}\right)^2 \tag{3.13}$$

A eficiência de contagem tripla para as três fotomultiplicadoras trabalhando em coincidência será:

$$\varepsilon = \left(1 - e^{-\frac{\nu m}{3}}\right)^3 \tag{3.14}$$

Ressalve-se, que nesse caso, os radionuclídeos não produzem elétrons monoenergéticos e as evidências experimentais mostram: 1) que o número de fótons emitidos não é proporcional à energia liberada no coquetel de cintilação líquida; 2) que para uma dada energia, o número de fótons emitidos por partículas alfa é menor do que o emitido por partículas beta; 3) que a emissão de luz é uma função inversa do poder de frenamento da partícula incidente.

3.3 Decaimento radioativo

3.3.1 Decaimento por emissão de partículas beta

O decaimento por partículas beta se processa tanto para elétrons (β^{-}) quanto para pósitrons (β^{+}). A energia total que é liberada no decaimento beta é distribuida entre a partícula beta e o neutrino, mas somente a energia do beta pode ser detectável no processo de cintilação.

No processo de decaimento por emissão de β^{-} um neutron é convertido em próton com a emissão de um elétron e o anti-neutrino, partícula de carga zero e massa aproximada de zero.

No decaimento por emissão de pósitron, um próton se converte em neutron com a emissão de partícula β^+ acompanhada do neutrino. O pósitron é a anti-partícula do elétron, possui carga oposta, spin na direção oposta áquela do elétron e libera a sua energia cinética na matéria via processo de ionização. O pósitron, na sua trajetória, quando está próximo de parar interage com um elétron, sua anti-partícula, e no processo de aniquilação produz dois fótons de raios gama de 0,511 MeV de energia equivalente a duas massas dos elétrons aniquilados.

A eficiência de contagem para partículas beta é dependente da energia original do decaimento e do grau de extinção na amostra.

3.3.2 Decaimento por captura eletrônica

No decaimento por captura eletrônica, o núcleo excitado captura um elétron da camada eletrônica, com a emissão de eletrons Auger ou raios X emitidos pelo rearranjo das camadas eletrônicas que, em geral, apresentam energias inferiores a 20 keV.

Os modelos de decaimento da captura eletrônica com as suas diversas possibilidades de rearranjo nas camadas eletrônicas K, L, M e N foram apresentados por A. G. MALONDA (1995) [9].

3.3.3 Decaimento por emissão gama com conversão interna

No decaimento beta acompanhado por emissão gama ou conversão interna, a energia é da ordem de 50 a 1500 keV e o processo de interação nas amostras líquidas do coquetel de cintilação produz elétrons Compton, embora essas interações sejam de menor magnitude nos líquidos fluorescentes. Em geral, a radiação eletromagnética

apresenta uma contribuição menor para a excitação no líquido fluorescente do que as partículas carregadas.

Na interação Compton uma parte da energia do fóton incidente é cedida a um elétron mais fracamente ligado do átomo e o fóton gama resultante, de energia menor, pode interagir com o líquido cintilador ou escapar do mesmo. A energia do fóton espalhado é dada por:

$$E'_{\gamma} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_0 c^2} (1 - \cos\theta)}$$
(3.15)

m₀ é a massa do elétron em repouso.

c é a velocidade da luz no vácuo.

 θ é o angulo entre o fóton dispersado e o incidente.

O valor de θ pode variar de zero, quando o fóton espalhado sai na mesma direção e sentido que o fóton incidente, a 180°, quando o sentido do fóton espalhado é oposto ao do incidente. Da mesma forma, a energia pode variar entre E_y e $E_y/(1+2E_y/m_0c^2)$ e, como a energia do elétron espalhado é $E_0 = E_y + E'_y$, também a energia poderá tomar quaisquer valores entre 0 e $2E_y^2/(m_0c^2 + 2E_y)$.

Em outros termos, a emissão monoenergética de fótons gama de uma interação Compton, seguida do escape do fóton espalhado, produz um espectro contínuo que se estende de zero a uma energia máxima.

A eficiência de detecção de fótons gama depende da energia e da natureza e volume do cintilador. O procedimento seguido para obter a eficiência de contagem, baseia-se no método de Monte Carlo. A. G.MALONDA AND E. G. TORAÑO (1989) [44] publicaram tabelas que dão a probabilidade de interação de raios gama em cintiladores para vários diâmetros de frasco de vidro e volumes de cintilador, no intervalo de 1 a 1000 keV.

3.4. Eficiência de detecção

3.4.1 Eficiência de detecção de nuclídeos que decaem por emissão de partículas beta

Segundo R. BRODA, P. CASSETTE and K, KOSSERT (2007) [45], a eficiência de contagem de um sistema de cintilação líquida é função do Parâmetro Livre e depende

da natureza da desintegração do radionuclídeo. Cálculos da eficiência de contagem requerem a computação do espectro de energia S(E) normalizado para o líquido cintilador:

$$\int_{0}^{E} S(E)dE = 1$$
 (3.16)

Para nuclídeos que decaem por transições β^+ e β^- , a probabilidade para a emissão de um elétron com energia total W = (1 + E/m₀c²) no intervalo (W, W + dW) é dada por:

$$N(W)dW = \left(\frac{g^2}{2\pi^2}\right)(W^2 - 1)^{\frac{1}{2}}W(W_0 - W)^2 F(Z, W)(1 + \delta_R(W, Z))C(W)dW$$
(3.17)

g é a constante de acoplamento para interações fracas.

W é a energia da partícula beta

W₀ é a energia máxima da partícula beta

F(Z,W) é a função de Fermi.

 $\delta_R(W, Z)$ é uma função que permite correções radiativas.

Z é o número atômico do núcleo filho.

C(W) é o fator de forma.

Esse cálculo tem sido integrado nos códigos computacionais EFFY de E. G. TORAÑO AND A. G. MALONDA (1985) [46], e SPEBETA de P. CASSETTE (1992) [47].

O fator de forma C(W) depende do tipo de transição beta. A classificação é baseada na diferença L = J_i - J_f entre o momento angular do estado inicial e final, e a paridade, isto é, se a paridade muda ($\pi_i \pi_f = -1$) ou não ($\pi_i \pi_f = +1$)).

No geral, as transições permitidas implicam em uma mudança de spin zero ou um e nenhuma mudança na paridade. No caso das transições proibidas, as mudanças no spin são maiores que um e ocorre mudança na paridade. A tabela 3.2 mostra as regras de seleção das transições β .

Para transições permitidas o fator de forma é geralmente C(W) = 1, que é também chamado de forma estatistica. No entanto, os espectros de elétrons observados

para um número de radionuclídeos não se ajustam com a distribuição particular de energia do correspondente tipo de transição, e deste modo, fatores de forma individuais são requeridos. A tabela 3.3 mostra as expressões gerais para o fator de forma.

$L = J_i - J_f$	$\pi_i \pi_f$	Tipo de transição
0,1	1	Permitida
0,1	-1	Primeira proibida não única
>1	(-1) ^L	L proibidas não única
>1	(-1) ^{L-1}	L proibidas única

Tabela 3.2 Regras de seleção de transições β .

Tabela 3.3 Expressões gerais dos fatores de forma de transições β.

Tipo da Transição	Fator de Forma	Fator de Forma alternativo
Permitida	1	$1 + aW + b/W + cW^2$
1ª. Proibida não única	1	$1+a\mathrm{W}+b/\mathrm{W}+c\mathrm{W}^2+d(q^2+\!\lambda_2p^2)$
1ª. Proibida única	$q^2+\lambda p^2$	1+aW
2ª. Proibida não única	$Bq^2 + \lambda p^2$	$A(W)q^2 + B(W)\lambda_2p^2$
2ª. Proibida única	$q^4+10/3\lambda_2p^2q2+\lambda_2p^4$	$q^2 + p^2$
3ª. Proibida não única	$q^4 + aq2p^2 + bp^4$	
3ª. Proibida única	$q^4 + 10/3p^2 \; q^2 + p^4$	

A tabela 3.4 apresenta os valores do fator de forma e as energias dos radionuclídeos emissores beta padronizados nesse trabalho: ³H, ¹⁴C, ⁹⁹Tc e ⁶⁸Ga.

Radionuclideo	Fator de Forma	Enérgia β máxima (keV)
³ H	1	18,591
¹⁴ C	1	156,476
⁶⁸ Ga	1	1899,1
⁹⁹ Tc	$0.54p^2 + q^2$	293,8

Tabela 3.4 Fatores de forma dos radionuclídeos padronizados.

Genericamente, no caso de nuclídeos emissores beta puro, a eficiência de detecção de um elétron, injetado num cintilador líquido, com uma densidade de distribuição de energia S(E), obtida da aplicação da Teoria de Fermi é dada por:

$$\varepsilon = \int_0^E S(E)(1 - e^{-\nu m})dE$$
(3.18)

$$m = \propto \int_0^E \frac{dE}{1 + kB\frac{dE}{dx}}$$
(3.19)

3.4.2 Eficiência de detecção de nuclídeos que decaem por captura eletrônica

O processo de captura eletrônica gera vacância na camada do átomo filho e um subsequente rearranjo pode levar a emissão de elétrons Auger, os quais contribuem para a eficiência de contagem. Os raios X ou gama podem também interagir com os átomos da amostra e produzir elétrons adicionais. A interação de raios X ou fótons de transições gama é usualmente calculada com a ajuda de procedimentos de Monte Carlo.

No caso de nuclideos de captura eletrônica, o espectro contínuo de emissores beta tem de ser recolocado com as contribuições dos elétrons Auger, bem como, dos elétrons secundários das interações dos fótons. R. BRODA, P. CASSETTE and K. KOSSERT (2007) [45] apresentam os diagramas e probabilidades para as diversas possibilidades do modelo KLM de rearranjo atômico do decaimento por captura eletrônica.

3.4.3 Interações de fótons

Segundo R. BRODA, P. CASSETTE and K. KOSSERT (2007) [45], os raios-X de baixa energia são completamente absorvidos dentro da amostra. Contudo, devido a não linearidade da resposta do cintilador, é importante determinar a distribuição de energia. A probabilidade de interação, assim como o espectro do elétron gerado por fótons com energia E, podem ser computados com a ajuda de procedimento de Monte Carlo, o que requer informações sobre a geometria da amostra e da totalidade do sistema de medição.

O primeiro passo do procedimento de Monte Carlo cobre a determinação da posição e da direção do fóton. A energia é então usada para calcular os coeficientes de atenuação (ou seção de choque) que dependem da densidade e da composição atômica da amostra. Os coeficientes de atenuação permitem determinar a posição da interação. Se a interação ocorre na amostra, a espécie do processo de interação tem de ser determinada.

Nos eventos de espalhamento Compton, uma parte da energia é transferida para o elétron e a simulação deve continuar com o fóton espalhado numa nova direção e com energia reduzida. Como descrito acima, a interação via efeito fotoelétrico é usualmente simplificada, uma vez que toda a energia é transferida para o fotoelétron e o rearranjo posterior à emissão de cada elétron é ignorado. Se o fóton tem energia maior do que 1,022 MeV pode levar à produção de pares.

A energia E de transições gama também pode ser usada para a emissão de elétrons de conversão com a energia $E - E_b$, sendo E_b a energia de ligação. A emissão dos elétrons cria vacâncias na camada atômica e os elétrons e raios X ejetados devido aos processos de rearranjo podem também contribuir para a eficiência de contagem.

3.5 Métodos de Cintilação Líquida do modelo do Parâmetro Livre

Na atualidade existem dois métodos consagrados na metrologia que são aplicados na padronização absoluta de radionuclídeos: CIEMAT/NIST e TDCR.

3.5.1 O método CIEMAT/NIST

O método CIEMAT/NIST usa um cintilador comercial com duas fotomultiplicadoras em coincidência, a 180º uma da outra.

Uma curva de eficiência versus extinção é obtida a partir de um conjunto de amostras de um padrão de ³H como traçador, de forma a caracterizar a condição experimental. Essa curva experimental é confrontada com a curva teórica de Parâmetro Livre versus eficiência do ³H. Assim, uma nova curva de Parâmetro Livre versus extinção é obtida.

As medições das amostras do radionuclídeo a ser padronizado são realizadas no equipamento comercial e os valores de extinção obtidos são interpolados na curva de Parâmetro Livre versus extinção do padrão ³H. O valor do Parâmetro Livre obtido é interpolado na curva teórica de Parâmetro Livre versus eficiência do radionuclídeo para encontrar a sua Atividade. A figura 3.1 mostra a representação desse processo de padronização semi-empírico.

Figura 3.1 Modelo CIEMAT/NIST: Diagrama de Padronização

O método CIEMAT/NIST, apesar de sua dependência ao padrão de ³H para a caracterização da condição experimental, tem excelente aplicação para padronização de
emissores beta, com grande exatidão e incerteza minimizada. Contudo, a sua aplicação para a padronização de radionuclídeos que decaem por captura eletrônica e por conversão interna é de elevada complexidade, uma vez que nesses casos a curva teórica de Parâmetro Livre versus eficiência oferece mais de uma possibilidade de valores de eficiência.

3.5.2 O Método TDCR

O método da razão entre as Coincidências Tripla e Duplas é essencialmente um método absoluto que utiliza três fotomultiplicadoras, a 120° uma das outras, resultando em três coincidências duplas e uma tripla, como pode ser visto na figura 3.2, que apresenta um modelo básico de um sistema TDCR implementado pelo LNHB/França.

A figura 3.3 mostra o sistema de detecção que é composto pelas fotomultiplicadoras, célula de acrílico e o frasco de vidro com o coquetel de cintilação, acoplados à instrumentação de processamentos e registro dos pulsos.

Figura 3.2. Modelo do sistema TDCR

Figura 3.3. Sistema de detecção do TDCR.

O método aplica o modelo do Parâmetro Livre na sua formulação teórica, descrito anteriormente, de forma que a Concentração de Atividade das soluções de radionuclídeos emissores beta pode ser obtida das expressões das eficiências teóricas confrontadas aos dados experimentais das coincidências duplas e tripla. Nesse sentido, partindo-se da eficiência de duas e três fotomultiplicadoras similares, a soma lógica das eficiências duplas é obtida:

$$\varepsilon_D = \int_0^{E_{max}} S(E) \left(3 \left(1 - e^{\frac{-\nu m}{3}} \right)^2 - 2 \left(1 - e^{\frac{-\nu m}{3}} \right)^3 \right) dE$$
(3.20)

A razão entre as coincidências tripla e duplas será obtida por:

$$\frac{\varepsilon_T}{\varepsilon_D} = \frac{\int_0^{E_{max}} S(E) \left(1 - e^{\frac{-\nu m}{3}}\right)^3 dE}{\int_0^{E_{max}} S(E) \left(3 \left(1 - e^{\frac{-\nu m}{3}}\right)^2 - 2 \left(1 - e^{\frac{-\nu m}{3}}\right)^3\right) dE}$$
(3.21)

Para um elevado número de eventos registrados, a taxa de frequências converge para a taxa de probabilidade:

$$\frac{T}{D} = \frac{\varepsilon_T}{\varepsilon_D} = TDCR \tag{3.22}$$

Se as fotomultiplicadoras são diferentes:

$$\frac{\varepsilon_T}{\varepsilon_{AB}} = \frac{\int_0^{E_{max}} S(E) \left(1 - e^{\frac{-v_A m}{3}}\right) \left(1 - e^{\frac{-v_B m}{3}}\right) \left(1 - e^{\frac{-v_C m}{3}}\right) dE}{\int_0^{E_{max}} S(E) \left(1 - e^{\frac{-v_A m}{3}}\right) \left(1 - e^{\frac{-v_B m}{3}}\right) dE}$$
(3.23)

$$\frac{\varepsilon_T}{\varepsilon_{BC}} e \frac{\varepsilon_T}{\varepsilon_{AC}}$$
(3.24)

A solução minimizada fornece a eficiência de detecção e a figura de mérito para cada fotomultimplicadora:

$$\left(\frac{T}{AB} - \frac{\varepsilon_T}{\varepsilon_{AB}}\right)^2 + \left(\frac{T}{BC} - \frac{\varepsilon_T}{\varepsilon_{BC}}\right)^2 + \left(\frac{T}{AC} - \frac{\varepsilon_T}{\varepsilon_{AC}}\right)^2 \tag{3.25}$$

3.5.2.1 Frascos usados na cintilação líquida

O frasco da solução cintiladora deve ser adequado para suportar a solução radioativa e ter excelentes qualidades de transferência da luz de cintilação para as fotomultiplicadoras. Os mais usados são frascos de vidro de borosilicato com baixo teor de Potássio, o qual contribui com a elevação da radiação de fundo. Os frascos de plástico têm melhor eficiência, mas têm o inconveniente da alta absorção de luz e de serem permeáveis a solventes orgânicos.

3.5.2.2 Fotomultiplicadoras

A implementação de sistema TDCR exige fotomultiplicadoras especiais, de alta sensibilidade e ganho. Como o modelo TDCR assume que a probabilidade de detecção

de um fóton não é zero, os níveis discriminadores dessas fotomultiplicadoras devem ser fixados abaixo da resposta do fotoelétron único, conforme a figura 3.4, o que implica o uso de fotomultiplicadoras de alto ganho com uma boa relação pico-vale do pico do fotoelétron gerado.

3.5.2.3 Unidade MAC3 de tempo morto estendido

O processamento eletrônico do sinal gerado pelo cintilador deve fazer face às propriedades da luz emitida pelo cintilador. A duração do pulso de luz de cintilação é tipicamente de poucos nanosegundos, de forma que a eletrônica deve ser capaz de processar pulsos rápidos. Como as fotomultiplicadoras são sensíveis às emissões térmicas é necessário remover os ruídos usando contagem em coincidência.

É necessário adicionar unidade de tempo morto depois de cada evento para evitar coincidências falsas e de emissão de luz retardada. O uso de uma unidade do tipo tempo morto estendido é uma boa forma de garantir que todo evento detectado seja precedido de um período livre de eventos.

J. BOUCHARD and P. CASSETTE (2000) [11] desenvolveram a unidade eletrônica de tempo morto extendido, MAC3 (Módulo de Aquisição de Coincidências Triplas), para o processamento de pulsos gerados por três fotomultiplicadoras usadas na implementação do método TDCR. Devido à natureza e duração do tempo morto, em geral, na ordem de 50 nanosegundos, não é possível a contagem de fontes radioativas de

alta Atividade, mas isso não é um grande problema, desde que as fontes sejam contadas na máxima possibilidade da unidade MAC3.

Uma relação lógica entre os diversos pulsos das fotomultiplicadoras individuais e em coincidência permite o cálculo de equações de balanço usadas para verificar a operação correta do sistema TDCR:

$$A + B + C = T + D + S$$

$$AB + BC + CA = 2T + D$$
(3.26)

Para calcular essas equações é necessário obter as contagens dos sinais não coincidentes (A, B e C), da soma lógica dos sinais não coincidentes (S), das três coincidências duplas (AB, BC e CA), da soma lógica das contagens dos sinais das coincidências dupla (D) e as contagens dos sinais da coincidência tripla (T).

3.5.2.4 A variação da eficiência de detecção

No sentido de analisar a qualidade do modelo de cálculo da eficiência de detecção e o ajuste do parâmetro de extinção kB, é usual a modificação das condições de operação do contador porque, se o modelo e os parâmetros são corretamente avaliados, a mesma Concentração de Atividade deve ser encontrada em torno dessas diferentes condições de contagem.

Os métodos mais usados são: a) adição de agentes químicos que produzem extinção; b) não destrutivos: a desfocalização pelo uso de alta tensão e o uso de filtros cinza de densidade ótica crescente.

No método da desfocalização, alguns tipos de fotomultiplicadoras possuem um eletrodo de focalização extra para otimizar a transmissão do fotoelétron do fotocatodo para o primeiro dinodo. A variação da voltagem ótima de focalização causa uma redução da probabilidade de transferência do fotoelétron para o primeiro dinodo reduzindo a eficiência de contagem. Contudo, a aplicação desse método é limitada a uma pequena variação da eficiência de contagem.

O método da utilização de filtros cinza, além de ser simples, não é destrutivo, e permite uma variação adequada à avaliação da correção dos parâmetros e modelo de cálculo usado. Neste caso, os filtros cinza são colocados na superfície externa do frasco de cintilação.

3.5.2.5 Código Computacional aplicado ao cálculo da eficiência de detecção no modelo do Parâmetro Livre

O código TDCR07c desenvolvido por P. CASSETTE (2007) [48], escrito em Fortran permite o cálculo da eficiência teórica em função do Parâmetro Livre, curva a ser confrontada aos resultados experimentais obtidos na medição do nuclídeo em foco. Inicialmente, os parâmetros atômicos e nucleares do decaimento são inseridos no código. Um detalhamento simplificado das suas diversas etapas é apresentado na etapa seguinte.

3.6 Cálculo de eficiência de detecção

3.6.1 O cálculo da eficiência de detecção para os nuclídeos que decaem por emissão de partículas beta

A aplicação do código pode ser resumida nas seguintes etapas ou sub-rotinas: 1) resolução da equação de J. B. BIRKS, que relaciona a energia das partículas com o número de fótons; 2) resolução do espectro de Fermi para a energia beta; e, 3) o cálculo da eficiência de detecção do modelo de Poisson.

Na resolução da formulação de J. B. BIRKS, os valores de Transferencia Linear de Energia ou Poder de Frenamento para elétrons e pósitrons são obtidos pelas formulas 2.16, 2.17 e 2.18 do ICRU REPORT 37 (1984) [49]. O cálculo é realizado para valores do parâmetro de extinção kB entre 0,007 a 0,020 cm.MeV⁻¹.

A formulação de Fermi é resolvida por meio da integral variando de 0 a 1000 pontos do espectro de energia beta, com a definição do fator de forma.

Por último, o cálculo da eficiência de detecção do modelo de Poisson é realizado em função dos dados atômicos e nucleares do decaimento, assim como, do tipo de coquetel usado. A caracterização de cada coquetel é realizada pelo código de Monte Carlo, PENELOPE (2008) [50] a partir de sua composição estequiométrica e densidade.

O resultado da execução do código é dado em termos do Parâmetro Livre, eficiência de contagem e TDCR para os diversos valores do parâmetro de extinção kB.

3.6.2 O cálculo da eficiência de detecção para nuclídeos que decaem por captura eletrônica

Nesse caso, foram levados em consideração o cálculo da formulação de Birks descrita anteriormente, a aplicação do modelo simplificado KLM do rearranjo atômico

resultante da captura eletrômica e a caracterização do sistema de detecção pelo codigo PENELOPE (Material.f/Gview/Pendbase/Pencylsl) para se obter as probabilidades de absorção das energias K α e K β de raios X do decaimento. O resultado da execução do código é dado em termos do Parâmetro Livre, eficiência de contagem e TDCR para os diversos valores do parâmetro de extinção kB.

3.6.3. Cálculo da eficiência de detecção para nuclídeos que decaem por emissão gama

Nesse sentido, o espectro Compton é obtido pela aplicação do código PENELOPE (Material.f/Gview/Pendbase/Pencylsl), também a partir da caracterização do sistema TDCR para a energia gama. Essse espectro é o arquivo de entrada na execução do codigo TDCR07c para o coquetel de cintilação especificado. O resultado é dado em termos de Parâmetro Livre, eficiência de contagem e TDCR para os diversos valores do parâmetro de extinção kB. O procedimento experimental utilizado para a determinação do valor da Concentração de Atividade de um radionuclídeo na amostra consistiu na interpolação do valor experimental da razão das coincidências duplas e tripla (TDCR) na curva teórica de eficiência de detecção versus TDCR, obtida pela execução de um código computacional elaborado a partir do modelo estatístico do Parâmetro Livre.

O valor experimental de TDCR foi obtido do arranjo experimental, no qual um frasco contendo a amostra do radionuclídeo dissolvido numa solução cintiladora foi acoplado simetricamente em relação a três fotomultiplicadoras que, simultaneamente, registraram a contagem de um mesmo evento no tempo de resolução de coincidência de 50 ns. A partir das contagens das três coincidências duplas, de sua soma lógica e da coincidência tripla, obteve-se o valor do TDCR.

Os valores teóricos da eficiência de detecção e do TDCR foram obtidos pela aplicação do código computacional TDCR07c, que é fundamentado no modelo estatístico do Parâmetro Livre. O código se baseia na distribuição de Poisson e foi aplicado ao processo de cintilação líquida a partir da correção da extinção por ionização desenvolvida por Birks, da teoria de Fermi para o espectro beta e dos dados atômicos e nucleares do radionuclídeo.

No modelo do Parâmetro Livre, o método de Monte Carlo foi aplicado em várias etapas para a caracterização das interações de fótons, elétrons e pósitrons nos materiais envolvidos, seja das espécies do líquido cintilador, seja do sistema de detecção, para a obtenção das probabilidades e espectros de absorção da energia.

4.1 Procedimento experimental

O procedimento experimental consistiu na caracterização de cada radionuclídeo padronizado, em termos das propriedades atômicas e nucleares, e dos esquemas de decaimento para a aplicação nos códigos computacionais ao cálculo da eficiência.

O código TDCR07c foi modificado para atender as especificidades relativas aos parâmetros de decaimento de ⁶⁸Ge/⁶⁸Ga e ^{99m}Tc, necessários ao cálculo da eficiência.

A fase subsequente foi a implementação do sistema TDCR, com a realização dos ajustes e da otimização da operação, a partir das medições preliminares com a utilização de padrões de ³H e ¹⁴C.

Por último, foram realizadas as simulações de Monte Carlo para a caracterização do sistema de detecção do TDCR implementado, dos materiais e coquetéis de cintilação usados, para a obtenção das probabilidades de absorção, $P_{K\alpha}$ e $P_{K\beta}$, dos raios X emitidos no decaimento por captura eletrônica e do espectro Compton do decaimento por emissão gama.

4.2 Esquemas de decaimento dos radionuclídeos.

Os dados atômicos e nucleares do decaimento foram obtidos das tabelas de radionuclídeos elaboradas pelo LNHB, M-M. BÉ, 2011 [51] adotada pelo BIPM.

4.2.1 ³H

O ³H tem uma meia-vida de 12,312 anos e decai com probabilidade de 100 % por transição β^{-} diretamente para o estado fundamental do ³He, com energia de 18,591 keV. A transição é do tipo superpermitida, que pelas regras de transição tem variação do momento angular igual a zero, sem mudança na paridade.

4.2.2 ¹⁴C

O ¹⁴C tem uma meia-vida 5700 anos e decai com probabilidade de 100 % por transição β^{-} para o estado fundalmental do ¹⁴N estável, com energia de 156,476 keV. A transição é do tipo permitida, que pelas regras de transição tem variação do momento angular igual a 0 ou 1 sem mudança na paridade.

4.2.3 ⁹⁹Tc

O ⁹⁹Tc tem uma meia-vida de 211,5 10^3 anos e decai com probabilidade de 99,99855 % por transição β^2 para o estado fundamental do ⁹⁹Ru.

A transição principal é do estado 9/2⁺ do ⁹⁹Tc para o estado 5/2⁺ do ⁹⁹Ru, que é uma transição proibida de segunda ordem não única, a qual pelas regras de transição tem variação do momento angular igual a 2, sem mudança na paridade.

4.2.4 ⁶⁸Ge/⁶⁸Ga

Os dois radionuclídeos estão em equilíbrio secular. Portanto, os parâmetros atômicos e nucleares dos decaimentos de ambos foram considerados para a determinação da Concentração de Atividade da solução.

O ⁶⁸Ga tem uma meia-vida de 67,83 minutos e decai por emissão de pósitron com probabilidade de 88,88 % e por captura eletrônica com probabilidade 11,11 %, para o ⁶⁸Zn. Existe uma variedade de emissões gama de baixas probalibilidades, mas apenas a emissão com probabilidade de 2,236 % foi considerada significativa no cálculo. O ⁶⁸Ge tem uma meia-vida de 270,95 dias e decai com probabilidade de 100 % por captura eletrônica para o estado fundamental do ⁶⁸Ga.

4.2.5 ^{99m}Tc

O ^{99m}Tc tem uma meia-vida de 6,0067 horas e decai para o estado fundamental do ⁹⁹Tc, com a emissão de radiação gama com conversão interna de elétrons.

4.3 Codigo computacional para o cálculo da eficiência de detecção.

O código TDCRC07c foi usado na sua forma original para o cálculo da eficiência de detecção dos emissores beta.

Nos casos de ⁶⁸Ge/⁶⁸Ga e ^{99m}Tc, algumas modificações foram realizadas para atender às especificidades dos respectivos decaimentos.

4.3.1 Caracterização do sistema de detecção do TDCR pelo método de Monte Carlo

O código PENELOPE/Pendbase foi usado para a caracterização dos materiais constituintes do sistema TDCR e dos coquetéis de cintilação líquida. A composição atômica e a densidade dos seguintes materiais foram computadas: alumínio, vidro, plástico (acrílico), ar e dos coquetéís de cintilação Hisafe3 e Ultima Gold. As dimensões e tipos de materiais do sistema foram transpostas para o arquivo de entrada, que inclui o tipo de emissão (fóton, elétron ou pósitron) com as respectivas energias para o cálculo das probabilidades e espectro de absorção de energia.

O arquivo de entrada foi executado no código PENELOPE/Geview para a simulação do sistema de detecção do TDCR apresentada na figura 4.1.

Figura 4.1 Simulação de Monte Carlo para o sistema de detecção do TDCR.

4.3.2 Cálculo das probabilidades de absorção para ⁶⁸Ge/⁶⁸Ga

O arquivo de entrada foi executado pelo código PENELOPE/Pencylsl para o cálculo das probabilidades de absorção das energias $P_{K\alpha}$ e $P_{K\beta}$ do 68 Ge/ 68 Ga no sistema de detecção do TDCR, assim como, da emissão gama de 1077 keV do 68 Ga.

Esses valores das probabilidades de absorção foram transpostos para o código TDCR07c para o cálculo do eficiência de detecção do ⁶⁸Ge/⁶⁸Ga.

4.3.3 Obtenção do espectro Compton para a emissão gama do ^{99m}Tc

Da mesma forma, o arquivo de entrada foi executado no código PENELOPE (Pencylsl) para a obtenção do espectro de absorção do Compton da emissão de 140 keV do ^{99m}Tc no sistema de detecção. O arquivo gerado do espectro Compton foi transposto ao código TDCR07c para o cálculo da eficiência de detecção do ^{99m}Tc.

4.4 Implementação do sistema TDCR

O protótipo implementado do sistema TDCR é constituido de uma câmara de alumínio, vedada à luz ambiente, com três fotomultiplicadoras simetricamente acopladas numa célula de acrílico, a 120° entre si. A parte superior da câmara de alumínio e da célula de acrílico tem uma tampa do mesmo material, as quais permitem a colocação do frasco da amostra radioativa, que é centrada dentro da célula de acrílico e equidistante em relação às fotomultiplicadoras.

As fotomultiplicadoras são conectadas aos divisores de tensão, os quais são alimentados por três fontes de alta tensão e possuem duas saídas dos sinais: uma linear para espectroscopia e outra para a unidade MAC3 de processamento de pulsos e tempo morto extendido.

A unidade MAC3 possui três entradas para os sinais provenientes das fotomultiplicadoras, com os respectivos amplificadores e discriminadores de ruidos, e uma entrada para base de tempo e respectivo ajuste. As saídas são correspondentes a cada fotomultiplicadora (A, B e C), às três coincidências duplas (AB, BC e CA), à soma lógica dos sinais individuais (S), à soma lógica das coincidências duplas (D), à coincidência tripla (ABC) e a base de tempo.

Todas as saídas da unidade MAC3 são conectadas aos contadores que registram as contagens individuais, duplas, soma lógica das contagens individuais, soma lógica das contagens duplas, contagem tripla e o tempo real das contagens em segundo, conforme mostra a figura 3.2.

4.4.1 Materiais e equipamentos

- Contador de Cintilação Líquida, 1414 Wallac, PerkinElmer.
- Câmara de Ionização Centronics IG-11-3
- 02 NIM-BIN Ortec 4001A e 401B.
- 01 fotomultiplicadora Enterprises Ltda modelo 9929A e 02 Thorn EMI modelo 9899A.
- 03 divisores de alta tensão confeccionados no LNMRI/IRD.
- 01 fontes de alta tensão Ortec modelo 478, 0 2 kV e 02 Ortec modelo 556, 0 3 kV.
- 01 osciloscópio Tektronix TDS 220.
- 01 amplificador Ortec 572.
- 01 pré-amplificador sensível à carga confeccionado no LNMRI/IRD.
- 01 unidade MAC3 confeccionada no BNM/CEA/LNHB/França.
- 02 contadores Ortec 974 e 01 Ortec 974A.
- 01 gerador de atraso e gatilho Tennelec 410A.
- 01 multímetro Fluke 87.
- 01 computador de laboratório.

4.4.2 Frascos e coquetéis de cintilação líquida

- Frascos de vidro borosilicato, com baixo teor de potássio (PerkinElmer)
- Hisafe3 e Ultima Gold (PerkinElmer)
- Nitrometano

4.4.3 Fontes radioativas usadas para os ajustes preliminares

- ³H, padrão Wallac, em n-hadecane-1-14C, Atividade 195000 dpm em 01/01/1997.
- ¹⁴C, padrão Wallac, em n-hexadecane, Atividade 100700 dpm em 01/01/97.

4.4.4 Fontes radioativas usadas nas padronizações pelos métodos TDCR e CIEMAT//NIST

- ³H CCRI(II)-K2.H-3), em água, Atividade 36,690 kBq/g em 31/05/2009, 12 h, Incerteza igual a 0,69 % (k = 2);
- ³H (IPL 958-62-4), em água, Atividade 81,363 KBq/g, em 01/07/2003, 12 h, Incerteza igual a 1,52 % (k = 2);
- 14 C (LMRI), em glicose e água, Atividade 925,370 kBq/g em 01/01/1980.
- 99 Tc NPL/UK DA-11337, 01/03/2012, em NH₄OH 0,1 M.
- ⁶⁸Ge/⁶⁸Ga (Eckert & Ziegler Analytics), em HCl 0,1N, Atividade 6.624,249 kBq/g em 01/01/2011.

4.4.5 Ajuste do sistema TDCR

As fotomultiplicadoras tiveram a alta tensão ajustada em valores acima dos recomendados pelos fabricantes, em função da eficiência. A discriminação dos ruídos de cada fotomultiplicadora foi realizada pela unidade MAC3, com o corte no vale do pico do fotoelétron único gerado.

Com as fotomultiplicadoras ajustadas na alta tensão e na discriminação do ruído, medições das fontes padrões de ³H e ¹⁴C foram realizadas para a avaliação das respostas de cada fotomultiplicadora.

4.4.6 Determinação da Concentração de Atividade das soluções de ³H, ¹⁴C e ⁹⁹Tc no sistema TDCR

A Concentração de Atividade das soluções dos radionuclídeos emissores beta foi determinada de acordo com o seguinte procedimento:

- Os valores de TDCR obtidos experimentalmente, por meio da razão entre as contagens de coincidência tripla e as respectivas contagens de coincidências duplas (T/AB, T/BC e T/CA), foram inseridos no código TDCR07c com a especificação do tipo de coquetel de cintilação utilizado. Os resultados da execução do código TDCR07c foram apresentados em termos da eficiência para cada valor específico de kB (fator de extinção de Birks);
- A Concentração de Atividade foi determinada pela razão entre as contagens da soma lógica das coincidências duplas e a eficiência dupla obtida pela execução do código para os respectivos valores do parâmetro de extinção kB;
- O ajuste do parâmetro de extinção kB foi determinado a partir da variação da eficiência de detecção de uma fonte do radionuclídeo, realizada por meio do uso de filtros cinza de densidade ótica crescente colocados sobre a superfície externa do frasco de vidro com a solução cintiladora.

O valor do parâmetro de extinção kB para o qual a Concentração de Atividade foi determinada, correspondeu àquele em que o ajuste linear do gráfico de TDCR versus Concentração de Atividade apresentou a menor inclinação, ou seja, a menor variação na eficiência de detecção

4.4.7 Determinação da Concentração de Atividade ⁶⁸Ge/⁶⁸Ga e ^{99m}Tc

A Concentração de Atividade das soluções dos radionuclídeos emissores beta com captura eletrônica e emisdores gama com conversão interna foi determinada de acordo com o seguinte procedimento:

- Os valores experimentais de TDCR foram interpolados nas curvas de eficiência teórica desses radionuclídeos, obtidas pela execução do código TDCR07c;
- A Concentração de Atividade foi determinada pela relação entre o valor experimental da soma lógica das contagens de coincidências duplas e a eficiência total obtida pela execução do código TDCR07c;
- O ajuste do parâmetro de extinção kB e a determinação da Concentração de Atividade, seguiram o procedimento já descrito anteriormente.

4.5 Padronização de soluções dos radionuclídeos

As padronizações foram realizadas pelo método TDCR e outros sistemas absolutos de medição do LNMRI/IRD, conforme o radionuclídeo: CIEMAT/NIST, Coincidência $4\pi\beta$ (CP)– γ (NaI) e Anticoincidência $4\pi\beta$ (CL)– γ (NaI).

A rastreabilidade ao sistema internacional de metrologia foi garantida por meio das comparações-chave das soluções de ⁹⁹Tc e ^{99m}Tc promovidas pelo BIPM. Além disso, foi feita uma comparação de solução de ⁶⁸Ge/⁶⁸Ga entre o LNMRI e o LNHB/França.

Parte significativa da padronização de ^{99m}Tc, relativas às modificações do código TDCR07c e aos experimentos preliminares foram realizadas no LNHB/França, no âmbito do programa de cooperação existente entre essa instituição e o LNMRI/Brasil.

Na cintilação líquida, o procedimento experimental usado para a padronização das soluções dos radionuclídeos pelos métodos TDCR e CIEMAT/NIST, consistiu na preparação de fontes radioativas por meio da pesagem de alíquotas dessas soluções e dissolução em frascos de vidros com 10 mL de coquetéis comerciais, Hisafe3 e/ou Última Gold.

Nas padronizações pelo método CIEMAT/NIST foi utilizado o código CN2003 E. GUNTER (2003) [52] para o cálculo da eficiência teórica dos radionuclídeos.

4.5.1 Padronização de solução de ³H

A padronização da solução de ³H (IPL 958-62-4), pelos métodos TDCR e CIEMAT/NIST de cintilação líquida, foi realizada por meio da medição de um total de 8 fontes de cada coquetel de cintilação, Hisafe3 e Ultima Gold. As fontes foram preparadas a partir da dissolução de alíquotas da solução do radionuclídeo em frascos de vidro com 10 mL de coquetel.

A figura 4.2 mostra o gráfico dos valores teóricos de TDCR versus eficiência de ³H, obtidos pela execução do código computacional TDCR07c para o parâmetro de extinção kB igual a 0,007 cm.MeV⁻¹.

36

Figura 4.2. Eficiência teórica de ³H.

No Método TDCR, outras duas fontes de ³H (IPL 958-62-4) de maior Atividade foram preparadas, uma em Hisafe3 e outra em Ultima Gold, para a medições com o uso de filtros cinza colocados na superfície externa dos frascos de vidro para o ajuste do parâmetro de extinção kB.

Na padronização pelo Método CIEMAT/NIST, foram preparadas 8 fontes do traçador ³H CCRI(II)-K2.H-3, em Hisafe3 e Ultima Gold, com praticamente a mesma massa cada. Alíquotas de Nitrometano, um agente químico que produz a extinção das amostras, foram adicionadas aos frascos na ordem crescente de volume de 0, 5, 10, 15, 20, 25, 30 e 35 µL para a obtenção da curva de extinção que caracteriza as condições experimentais do cintilador líquido. Essas fontes foram usadas na padronização dos demais radionuclídeos (¹⁴C e ^{99m}Tc) pelo método CIEMAT/NIST.

4.5.2 Padronização de solução de ¹⁴C

A padronização da solução de ¹⁴C-LMRI, pelos métodos TDCR e CIEMAT/NIST de cintilação líquida, foi realizada por meio da medição de um total de 8 fontes de cada coquetel de cintilação, Hisafe3 e Ultima Gold. As fontes foram preparadas a partir da dissolução de alíquotas da solução do radionuclídeo em frascos de vidro com 10 mL de coquetel.

A fonte ¹⁴C-06 foi usada para o ajuste do parâmetro de extinção kB, no método TDCR. A obtenção da curva de extinção do método CIEMAT/NIST foi realizada segundo o precedimento experimental utilizado para o ³H.

A figura 4.3 mostra o gráfico dos valores teóricos de TDCR versus eficiência de ¹⁴C, obtidos pela execução do código computacional TDCR07c para o parâmetro de extinção kB igual a 0,007 cm.MeV⁻¹.

Figura 4.3. Eficiência teórica de ¹⁴C.

4.5.3 Padronização de solução de ⁹⁹Tc de comparação-chave internacional promovida pelo BIPM

A padronização da solução ⁹⁹Tc – NPL/UK DA-11337, pelo método TDCR de cintilação líquida, foi realizada por meio da medição de um total de 9 fontes em coquetel de cintilação Hisafe3. As fontes foram preparadas a partir da dissolução de alíquotas da solução do radionuclídeo em frascos de vidro com 10 mL de coquetel.

A fonte ⁹⁹Tc-01 foi medida com o uso de filtros cinza, colocados sobre a superfície externa do frasco de vidro, para o ajuste do parâmetro de extinção kB, no método TDCR.

A figura 4.4 mostra o gráfico dos valores teóricos de TDCR versus eficiência de ⁹⁹Tc, obtidos pela execução do código computacional TDCR07c.para o parâmetro de extinção kB igual a 0,007 cm.MeV⁻¹.

A solução ⁹⁹Tc – NPL/UK DA-11337 também foi padronizada pelos métodos de Coincidência $4\pi \beta$ (CP)- γ (NaI) e Anticoincidência $4\pi \beta$ (CL)– γ (NaI).

Figura 4.4. Eficiência teórica de ⁹⁹Tc.

4.5.4 Padronização de solução de ⁶⁸Ge/⁶⁸Ga em cooperação com o LNHB/França

A padronização de solução ⁶⁸Ge/⁶⁸Ga (Eckert & Ziegler Analytics), realizada no âmbito da cooperação existente entre LNMRI/Brasil e LNHB/França, foi precedida pela visita científica ao LNMRI do Dr. Philippe Cassette, do LNHB, para a implementação do método TDCR. Dentre as contribuições fundamentais para a implementação do método, o LNHB forneceu a unidade MAC3 de processamento de pulsos e de tempo morto extendido, de fabricação exclusiva do LNHB e distribuida aos demais laboratórios da rede internacional de metrologia do BIPM.

A padronização de solução de ⁶⁸Ge/⁶⁸Ga (Eckert & Ziegler Analytics) foi submetida à medições nos sistemas TDCR dos dois laboratórios para a comparação de resultados e avaliação do processo de implementação do método no LNMRI.

A solução de trabalho foi obtida pela diluição de alíquotas de solução de ⁶⁸Ge/⁶⁸Ga (Eckert & Ziegler). Essa solução de trabalho foi padronizada no LNMRI pelo sistema absoluto Anticoincidência $4\pi \beta$ (CL)– γ (NaI) e TDCR. Parte da solução de trabalho foi enviada ao LNHB/França para padronização no sistema TDCR.

Um total de 8 fontes foram preparadas para a padronização pelo método TDCR no LNMRI, a partir da dissolução de alíquotas das solução de trabalho de ⁶⁸Ge/⁶⁸Ga em frascos de vidro com 10 mL de coquetel Hisafe3. A fonte ⁶⁸Ge/⁶⁸Ga-03 foi usada para as medições com o uso de filtros cinza no ajuste do valor do parâmetro de extinção kB.

A figura 4.5 apresenta o gráfico dos valores teóricos de TDCR versus eficiência total de ⁶⁸Ge/⁶⁸Ga, resultante das contribuições do decaimento de ⁶⁸Ge e ⁶⁸Ga, para o

parâmetro de extinção kB igual a 0,007 cm.MeV⁻¹, obtida por meio da execução do código TDCR07c.

Figura 4.5. Eficiência teórica de ⁶⁸Ge/⁶⁸Ga.

4.5.5 Padronização de solução ^{99m}Tc da comparação-chave internacional promovida pelo BIPM, em cooperação com o LNHB/França.

A padronização foi realizada no âmbito da comparação-chave de ^{99m}Tc promovida pelo BIPM, com a finalidade da estabelecer a rastreabilidade para os sistemas de medições dos laboratórios nacionais integrantes da rede internacional de metrologia de radionuclídeos.

Em 2013, a comparação das medições da Atividade de ^{99m}Tc foi realizada por meio do Instrumento de Transferência do Sistema Internacional de Referência (SIRTI) no Laboratório Nacional de Metrologia das Radiações Ionizantes do Instituto de Radioproteção e Dosimetria (LNMRI/IRD).

4.5.5.1 Procedimento experimental do BIPM na padronização de solução de ^{99m}Tc

As medições foram realizadas pelo BIPM no LNMRI. Ampolas contendo cerca de 66 kBq de solução de ^{99m}Tc preparadas pelo LNMRI foram medidas no SIRTI por mais de duas meias-vida. O arranjo experimental do Instrumento de Transferência (SIRTI) constituiu-se de um cristal de NaI(Tl), tipo poço, calibrado contra o SIR.

A estabilidade do sistema foi monitorada por meio de uma fonte de referência de 94 Nb (T_{1/2} = 20.300 anos) do IRMM (Institute for Reference Materials and Measurements), que também contém o isótopo 93m Nb.

A taxa de contagem do ^{99m}Tc acima da discriminação de baixa energia, definida pelo pico de 16,6 keV dos raios X do ^{93m}Nb, foi medida relativamente à taxa de contagem de ⁹⁴Nb acima do mesmo nível de discriminação. Com o nível de discriminação fixado, um filtro de cobre foi colocado no interior para suprimir a contribuição do ^{93m}Nb às medições de estabilidade de ⁹⁴Nb. As incertezas associadas ao decaimento de ⁹⁴Nb foram desprezadas. A ampola de ^{99m}Tc (SIR) foi colocada no detector com o filtro de cobre para suprimir a contribuição das contagens referentes ao pico dos raios X do ^{99m}Tc, Nenhuma extrapolação foi realizada, assim como todas as medições foram feitas com o mesmo arranjo da discriminação.

Similarmente ao que é realizado no SIR, uma Atividade Equivalente do SIRTI foi deduzida dos resultados das contagens de ⁹⁴Nb e ^{99m}Tc obtidas no LNMRI. A Atividade Equivalente corresponde ao inverso do fator de calibração, isto é, a taxa de contagem do ^{99m}Tc no SIRTI dividida pela Atividade da fonte medida pelo LNMRI.

A comparação foi identificada como BIPM.RI(II)-K4.Tc-99m. A comparação está relacionada à comparação-chave BIPM.RI(II)-K1.Tc-99m e o grau de equivalência com o valor da comparação-chave de referência e entre os resultados obtidos no LNMRI e outros participantes da K4 e os seis participantes na comparação KI foram avaliados.

4.5.5.2 Procedimento experimental do LNMRI na padronização de solução de ^{99m}Tc

O procedimento do BIPM foi precedido por comparações entre os sistemas de medição do LNMRI para a determinação absoluta da Concentração de Atividade de soluções de ^{99m}Tc e a determinação do Fator de Calibração da Câmara de Ionização. Os sistemas de medição usados foram: TDCR e CIEMAT/NIST de cintilação líquida; Anticoincidência $4\pi \beta$ (CL)– γ (NaI); e Câmara de Ionização IG11-3. A presença de impurezas nas soluções de ^{99m}Tc, especialmente de ⁹⁹Mo, foram verificadas por espectrometria gama.

No LNMRI foram realizadas um total de 5 comparações entre os sistemas de medições, a partir de soluções de ^{99m}Tc obtidas do Hospital Barra D'OR (Barra da Tijuca /RJ). A quinta comparação foi a realizada com a mesma solução de ^{99m}Tc medida no SIRTI pelo BIPM.

O procedimento experimental constou de medições das fontes de ^{99m}Tc para a determinação das Concentrações de Atividade das soluções do radionuclídeo, as quais foram relacionadas às Correntes obtidas na Câmara IG11-3. O Fator de Calibração da Câmara IG11-3 foi obtido pela relação entre a Corrente e a Atividade de cada

comparação, o que permitiu a normalização dos resultados das Concentrações de Atividade obtidas pelos sistemas de medição.

A mesma solução de ^{99m}Tc preparada para as medições do BIPM no Instrumento de Transferência (SIRTI) foi medida pela Câmara de Ionização IG11-3, com a utilização do Fator de Calibração determinado por meio das comparações realizadas pelo LNMRI. A Concentração de Atividade da solução de ^{99m}Tc foi então determinada, dividindo-se a Corrente da Câmara pelo Fator de Calibração e a massa da solução do radionuclídeo utilizada.

A Atividade Equivalente foi determinada pela relação entre a Atividade obtida pelo LNMRI e a taxa de contagens do SIRTI, de forma a estabelecer a comparação do resultado do LNMRI com aqueles obtidos pelos demais laboratórios nacionais participantes da comparação-chave do BIPM.

A padronização das soluções de ^{99m}Tc pelo métodos de cintilação líquida, TDCR e CIEMAT/NIST, foram realizadas a partir das medições das mesmas fontes, preparadas em coquetel de cintilação Hisafe3.

A parte preliminar da padronização pelo método TDCR foi realizada no LNHB/França, com a modificação do código computacional TDCR do cálculo da eficiência, para adequá-lo às especificidades do esquema de decaimento do ^{99m}Tc. Uma solução de ^{99m}Tc, obtida da medicina nuclear, foi padronizada pelos sistemas de medição do LNHB: Câmara de Ionização, Espectrometria gama e TDCR.

O código TDCR07c e o procedimento experimental adotados no LNHB, foram utilizados nas medições realizadas no TDCR do LNMRI. O ajuste do valor do parâmetro de extinção kB foi realizado por meio da medição de fonte de uma solução de ^{99m}Tc preparada em coquetel Hisafe3, com o uso de filtros cinza de densidade ótica crescente.

A figura 4.6 apresenta o gráfico dos valores teóricos de TDCR versus eficiência total de ^{99m}Tc, resultante das contribuições da emissão gama e da conversão interna, para o parâmetro de extinção kB igual a 0,007 cm.MeV⁻¹, obtido por meio da execução do código TDCR07c.

A primeira comparação entre os sistemas de medições do LNMRI foi realizada a partir de fontes de duas soluções de ^{99m}Tc preparadas no Hospital Barra D'OR em água e ácido clorídrico de concentração 0,1 N, respectivamente. Nos sistemas de cintilação líquida, TDCR e CIEMAT/NIST, foram realizadas medições de um total de 10 fontes

preparadas em Hisafe3. As demais comparações foram realizadas a partir de soluções de ^{99m}Tc em ácido clorídrico de concentração 0,01 N.

Figura 4.6. Eficiência teórica de ^{99m}Tc.

4.5.6 Avaliação das incertezas nas padronizações

A avaliação de incertezas nas padronizações das soluções dos radionuclídeos pelos métodos TDCR e CIEMAT/NIST de cintilação líquida, foi realizada segundo o procedimento do Guia de Incertezas de Metrologia JCGM (2008) [53], adotado pelo BIPM.

No método TDCR, os parâmetros atômicos e nucleares dos radionuclídeos foram acrescidos de suas incertezas associadas com a execução dos códigos computacionais de cálculo da eficiência de detecção, de forma a determinar suas contribuições nas Concentrações de Atividade das soluções dos radionuclídeos.

Nas comparações dos resultados obtidos pelos sistemas de medição, utilizou-se a incerteza expandida da média, com a aplicação da distribuição de Student, no nível de confiança de 95 %.

5.1 Padronização de solução de ³H

A padronização de ³H foi realizada pelos métodos TDCR e CIEMAT/NIST, com utilização de dois tipos de coquetéis de cintilação líquida, Hisafe3 e Ultima Gold. Filtros cinza com densidade ótica crescente e nitrometano foram usados com o objetivo de produzir a extinção de luz das fontes medidas: as curvas de eficiência.

Os parâmetros experimentais observados, foram referentes à obtenção de contagens das fontes, da extinção do sinal luminoso gerado pela interação das partículas beta nos cintiladores e da eficiência de detecção do sistema TDCR implementado.

Os resultados das medições das 16 fontes da solução ³H (IPL 958-62-4), realizadas no sistema TDCR, são apresentados nas tabelas 5.1 e 5.2 para Hisafe3 e Ultima Gold, em função dos valores de TDCR e Concentração de Atividade, correspondentes aos respectivos valores do parâmetro de extinção kB, no intervalo de $0,007 \text{ a } 0,015 \text{ cm.MeV}^{-1}$.

As tabelas 5.3 e 5.4 apresentam os resultados das medições realizadas com o uso de filtros cinza para os dois tipos de coquetéis, com a finalidade do ajuste do valor do parâmetro de extinção kB, pela variação da eficiência. O ajuste linear foi realizado para os valores de Concentração de Atividade de cada valor do parâmetro de extinção kB.

Os resultados das medições das 16 fontes da solução ³H-IPL 958-62-4, no total de 8 fontes de cada tipo de coquetel, realizadas pelo método CIEMAT/NIST, são apresentados nas tabelas 5.5 e 5.6, em termos da Concentração de Atividade. Essas tabelas também apresentam os dados da solução padrão de ³H CCRI(II)-K2.H-3, que foi utilizada para caracterizar as condições experimentais e a determinação da extinção de luz na solução ³H-IPL 958-62-4 por meio da curva de extinção do traçador ³H padrão.

Fonte	TDCR	CB kB (cm.MeV ⁻¹) / Atividade (kBq/g)								
Fonte		0,007	0,008	0,009	0,01	0,011	0,012	0,013	0,014	0,015
³ H -01	0,2864	47,256	47,713	48,164	48,592	48,965	49,344	49,697	50,022	50,334
³ H -02	0,2858	46,436	46,900	47,344	47,751	48,134	48,492	48,839	49,175	49,467
³ H -03	0,2854	45,145	45,611	46,044	46,426	46,814	47,162	47,501	47,813	48,113
³ H -04	0,2846	47,525	48,018	48,460	48,879	49,273	49,641	49,999	50,328	50,645
³ H -05	0,2843	47,269	47,759	48,199	48,615	49,008	49,358	49,730	50,074	50,373
³ H -06	0,2831	47,075	47,551	48,006	48,408	48,816	49,167	49,524	49,852	50,168
³ H -07	0,2836	47,411	47,895	48,343	48,767	49,167	49,524	49,887	50,221	50,542
³ H -08	0,2832	47,477	47,957	48,416	48,820	49,216	49,602	49,944	50,275	50,593

Tabela 5.1 Concentração de Atividade das fontes da solução ³H-IPL 958-62-4, obtida pelo método TDCR, em Hisafe3.

Tabela 5.2 Concentração de Atividade das fontes da solução ³H-IPL 958-62-4, obtida pelo método TDCR, em Ultima Gold.

Fonte	TDCR	kB (cm.MeV ⁻¹) / Atividade (kBq/g)								
rome		0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015
³ H -09	0,3074	47,545	48,010	48,442	48,853	49,227	49,593	49,934	50,265	50,569
³ H -10	0,3095	47,167	47,625	48,064	48,470	48,853	49,199	49,550	49,861	50,161
³ H -11	0,3082	47,450	47,913	48,357	48,752	49,139	49,504	49,829	50,158	50,461
³ H -12	0,3104	47,452	47,912	48,338	48,744	49,114	49,475	49,812	50,153	50,454
³ H -13	0,3078	45,964	46,412	46,843	47,226	47,616	47,955	48,285	48,590	48,884
³ H -14	0,3066	47,002	47,463	47,892	48,299	48,671	49,034	49,372	49,671	49,988
³ H -15	0,3085	46,005	46,453	46,869	47,265	47,626	47,993	48,321	48,626	48,934
³ H -16	0,3098	46,946	47,397	47,829	48,241	48,618	48,959	49,304	49,610	49,920

Filtro	TDCR	DCR kB (cm.MeV ⁻¹) / Atividade (kBq/g)									
	IDCK	0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015	
S/F	0,2718	46,452	46,929	47,369	47,768	48,175	48,538	48,890	49,213	49,540	
F1	0,2586	45,703	46,161	46,611	47,020	47,404	47,776	48,120	48,451	48,769	
F2	0,2346	46,359	46,854	47,303	47,760	48,168	48,543	48,904	49,249	49,579	
F3	0,2083	45,986	46,494	46,947	47,410	47,814	48,225	48,573	48,925	49,283	
F4	0,1814	46,233	46,748	47,221	47,704	48,142	48,532	48,927	49,301	49,621	
F5	0,1790	46,004	46,526	47,006	47,469	47,886	48,309	48,711	49,061	49,416	
F6	0,1670	45,935	46,452	46,980	47,399	47,856	48,260	48,639	49,024	49,382	
F7	0,1563	45,653	46,180	46,655	47,140	47,568	48,005	48,380	48,762	49,114	

Tabela 5.3 Concentração de Atividade de fonte ³H-17, obtida pelo método TDCR, com uso de filtros, em Hisafe3.

Tabela 5.4 Concentração de Atividade de ³H-18, obtida pelo método TDCR, com uso de filtros, em Ultima Gold.

Filtro	TDCP	CR kB (cm.MeV ⁻¹) / Atividade (kBq/g)								
гшо	IDCK	0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015
S/F	0,2976	46,492	46,950	47,388	47,792	48,157	48,529	48,861	49,181	49,507
F1	0,2833	46,140	46,604	47,032	47,438	47,836	48,177	48,524	48,843	49,151
F2	0,2578	46,172	46,658	47,121	47,542	47,936	48,302	48,655	48,995	49,304
F3	0,2300	45,879	46,382	46,839	47,266	47,660	48,061	48,408	48,759	49,073
F4	0,2006	46,277	46,794	47,254	47,722	48,127	48,515	48,909	49,260	49,615
F5	0,1997	46,191	46,711	47,196	47,644	48,052	48,467	48,839	49,191	49,549
F6	0,1847	46,034	46,562	47,049	47,494	47,893	48,300	48,685	49,077	49,418
F7	0,1745	45,780	46,285	46,773	47,244	47,668	48,041	48,420	48,806	49,167

Figura 5.1 Concentração de Atividade da fonte ³H-17, obtida pelo método TDCR, com o uso de filtros, em Hisafe3.

Figura 5.2 Concentração de Atividade da fonte ³H-18, obtida pelo método TDCR, com uso de filtros, em Ultima. Gold.

Os resultados das medições das 16 fontes da solução ³H-IPL 958-62-4, realizadas pelo método CIEMAT/NIST são apresentados nas tabelas 6.5 e 6.6.

Nuclideo	Solução	Fonte Massa		СРМ	SQPE	Atividade
			(g)			(kBq/g)
		³ H-01	0,051202	32070	786,9	
		³ H-02	0,057558	30408	763,0	
		³ H-03	0,052493	20450	725,8	
	Padrão	³ H-04	0,056998	17503	697,2	20.059
	³ H_P	³ H-05	0,060261	14684	676,3	29,058
		³ H-06	0,052473	11996	674,0	
		³ H-07	0,057178	10930	650,3	
311		³ H-08	0,056658	9596	658,7	
Н		³ H-17	0,060352	64297	793,6	50,171
		³ H-18	0,056366	58816	793,9	49,108
		³ H-19	0,057774	58946	793,9	47,987
	3	³ H-20	0,052908	56272	793,7	49,867
	H_X	³ H-21	0,059551	62764	793,8	49,540
		³ H-22	0,058816	61887	792,5	49,396
		³ H-23	0,058411	59342	793,3	47,873
		³ H-24	0,063447	67315	793,9	49,869

Tabela 5.5 Concentração de Atividade das fontes de ³H-IPL 958-62-4, obtida pelo método CIEMAT/NIST, em Hisafe3.

Nuclideo	Solução	Fonte Massa		СРМ	SQPE	Atividade
			(g)			(kBq/g)
1		³ H-09	0,050441	34712	795,6	
		³ H-10	0,054766	32453	776,7	
		³ H-11	0,044335	19070	738,4	
	Padrão	³ H-12	0,047949	16363	708,3	20.059
	³ H_P	³ H-13	0,050782	13421	681,4	29,058
		³ H-14	0,053564	13679	676,5	
		³ H-15	0,049510	10073	657,7	
3		³ H-16	0,052924	8360	630,3	
Ή		³ H-25	0,057920	68244	793,6	50,529
		³ H-26	0,060161	70629	793,9	50,230
		³ H-27	0,060100	70419	793,9	50,131
	3	³ H-28	0,058799	69221	793,7	50,447
	H_X	³ H-29	0,058977	67186	793,8	48,778
		³ H-30	0,059077	68135	792,5	49,886
		³ H-31	0,060920	69069	793,3	48,735
		³ H-32	0,062332	73260	793,9	50,286

Tabela 5.6 Concentração de Atividade das fontes de ³H-IPL 958-62-4, obtida pelo método CIEMAT/NIST, em Ultima Gold.

5.1.1 Aplicação do teste estatístico de Grubbs (Outlier) às medições das fontes de ³H

Os valores de Concentração de Atividade das fontes obtidas pelos dois métodos de padronização foram submetidos ao teste estatístico de GRUBBS, (1972) [53], no nível de confiança de 95 %, para a verificação da consistência dos resultados e a tomada de decisão quanto à possível exclusão de dados inconsistentes.

No método TDCR, as medições obtidas em Hisafe3 apresentaram inconsistências em duas fontes, ³H-02 e ³H-03, as quais foram excluídas do cálculo da média da Concentração da Atividade da solução de ³H.

No método CIEMAT/NIST, as medições obtidas em ambos os coquetéis apresentaram coerência frente à aplicação do teste estatístico e todas foram consideradas no cálculo do valor médio da Concentração de Atividade da solução de ³H.

5.1.2 Determinação da Concentração de Atividade da solução de ³H

O procedimento de ajuste do valor do parâmetro de extinção kB foi realizado a partir das medições obtidas com o uso dos filtros cinza, de densidade ótica crescente, colocados na superfície externa dos frascos de duas fontes da mesma solução de ³H: as fontes ³H-17 em Hisafe3 e ³H-18 em Ultima Gold. Os gráficos apresentados nas figuras 5.1 e 5.2 para Hisafe3 e Ultima Gold, obtidos a partir das tabelas 5.3 e 5.4, mostram que em ambos os coquetéis o melhor ajuste ou a menor variação da Concentração de Atividade, foi obtido para o parâmetro de extinção kB igual 0,013 cm.MeV⁻¹.

A Concentração de Atividade da solução de ³H, obtida pelo método TDCR, foi determinada pela média dos valores relacionados do parâmetro de extinção kB igual a 0,013 cm.MeV⁻¹, para os coquetéis Hisafe3 e Ultima Gold, das tabelas 5.1 e 5.2, consideradas as exclusões realizadas pela aplicação do teste estatístico de Grubbs.

No método CIEMAT/NIST, a Concentração de Atividade foi obtida pela média dos valores das medições de todas as fontes, em Hisafe3 e Ultima Gold, das tabelas 5.5 e 5.6.

5.1.3 Avaliação das incertezas da padronização da solução de ³H

A avaliação de incertezas para a padronização da solução ³H-IPL 958-62-4, realizada para as medições das fontes obtidas pelos métodos TDCR e CIEMAT/NIST, são apresentadas nas tabelas 5.7 e 5.8 e, 5.9 e 5.10, respectivamente.

Tabela 5.7. Incertezas da padronização da solução ³H-IPL 958-62-4 pelo método TDCR, em Hisafe3.

Componente de Incerteza	Tipo	%
Massa (g)	В	0,05
Contagens	А	0,57
Atividade das fontes	А	0,36
Atividade (determinação de kB pelo uso de filtros)	А	0,28
Dados atômicos e nuclearres	В	< 0,01
Incerteza total (k = 1)		0,73

Tabela 5.8. Incertezas da padronização da solução ³H-IPL 958-62-4 pelo método TDCR, em Ultima Gold.

Componente de Incerteza	Tipo	%
Massa (g)	В	0,05
Contagens	А	0,58
Atividade das fontes	А	0,66
Atividade (determinação de kB pelo uso de filtros)	А	0,2
Dados atômicos e nuclearres	В	< 0,01
Incerteza total (k = 1)		0,90

Componente de Incerteza	Tipo	%
Atividade do padrão ³ H	в	0,35
Massa do padrão ³ H	в	0,05
Extinção do padrão ³ H (SQPE)	А	0,44
Contagens do padrão ³ H	Α	0,33
Parâmetros atômicos e nucleares	в	0,07
Assimetria das fotomultiplicadoras	в	0,25
Parâmetro de extinção (kB)	в	0,23
Massa das fontes de ³ H	в	0,05
Extinção das fontes de ³ H (SQPE)	Α	0,30
Contagens das fontes de ³ H	Α	0,23
Atividade das fontes de ³ H	Α	1,75
Incerteza total (k = 1)		1,94

Tabela 5.9 Incerteza da padronização da solução ³H-IPL 958-62-4, pelo método CIEMAT/NIST, em Hisafe3.

Tabela 5.10 Incerteza da padronização da solução ³H-IPL 958-62-4, pelo método CIEMAT/NIST, em U. Gold.

Componente de Incerteza	Tipo	%
Atividade do padrão ³ H	В	0,35
Massa do padrão ³ H	в	0,05
Extinção do padrão ³ H (SQPE)	А	0,44
Contagens do padrão ³ H	Α	0,33
Parâmetros atômicos e nucleares	В	0,07
Assimetria das fotomultiplicadoras	В	0,25
Parâmetro de extinção (kB)	В	0,23
Massa das fontes de ³ H	в	0,05
Extinção das fontes de ³ H (SQPE)	А	0,30
Contagens das fontes de ³ H	А	0,32
Atividade das fontes de ³ H	А	1,44
Incerteza total ($k = 1$)		1,68

5.1.4 Resultados da padronização da solução de ³H

Os resultados da padronização da solução ³H-IPL 958-62-4, obtidos pelos métodos TDCR e CIEMAT/NIST, para os dois tipos de coquetéis de cintilação, são apresentados na tabela 5.11. O respectivo gráfico da figura 6.3, mostra que os resultados obtidos pelos dois métodos e coquetéis, são consistentes entre si, dentro de uma incerteza padrão (k = 1).

Tabela 5.11 Resultados da padronização da solução ³H-IPL 958-62-4, pelos métodos TDCR e CIEMAT/NIST, em Hisafe3 e Ultima Gold.

Nuclideo	Método	Coquetel	Atividade	Incerteza (k = 1)
			(kBq/g)	(%)
	TDCP	Hisafe3	49,797	0,73
3	IDCK	Ultima Gold	49,301	0,90
-H -	CIEMAT	Hisafe3	49,226	1,94
	CIEMAI	Ultima Gold	49,878	1,68

Figura 5.3 Resultados da padronização da solução ³H-IPL 958-62-4, pelos métodos TDCR e CIEMAT/NIST, em Hisafe3 e Ultima Gold, (k = 1).

5.2 Padronização de ¹⁴C

A padronização da solução ¹⁴C-LMRI foi realizada em coquetel Hisafe3 pelos dois métodos de cintilação líquida. Os resultados das medições das 8 fontes de ¹⁴C, realizadas no sistema TDCR, são apresentados nas tabelas 5.12 e 5.13 para Hisafe3 e Ultima Gold, respectivamente.

Tabela 5.12 Concentração de Atividade das fontes da solução ¹⁴C-LMRI, obtida pelo método TDCR, em Hisafe3.

Fonte	TDCR	kB (cm.MeV ⁻¹) / Atividade (Bq/g)								
ronte	IDCK	0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015
¹⁴ C - 01	0,8723	910,715	912,033	913,457	914,680	915,908	916,933	918,166	919,093	919 <u>,</u> 918
¹⁴ C -02	0,8726	911,282	912,703	914,027	915,252	916,480	917,507	918,638	919,566	920,702
¹⁴ C -03	0,8732	914,920	916,448	917,673	919,005	920,032	921,267	922,299	923,334	924,370
¹⁴ C -04	0,8731	910,301	911,821	913,041	914,366	915,387	916,514	917,643	918,672	919,497
¹⁴ C -05	0,8733	910,371	911,688	913,008	914,231	915,559	916,685	917,609	918,535	919 <u>,</u> 669
¹⁴ C -06	0,8727	911,954	913,376	914,598	915,925	917,052	918,284	919,313	920,241	921,275
¹⁴ C -07	0,8718	910,912	912,434	913,554	914,982	915,903	917,237	918,368	919,296	920,122
¹⁴ C -08	0,8716	913,430	914,753	916,080	917,308	918,540	919,671	920,806	921,840	922,772

Tabela 5.13 Concentração de Atividade das fontes da solução ¹⁴C-LMRI, obtida pelo método TDCR, em Ultima Gold.

Fonte	TDCR	kB (cm.MeV ⁻¹) / Atividade (KBq/g)								
		0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015
¹⁴ C - 09	0,8876	911,237	912,438	913,743	914,951	915,960	916,971	917,883	918,797	919,713
¹⁴ C -10	0,8811	910,958	912,267	913,479	914,694	915,913	917,032	917,848	918,768	919,792
¹⁴ C -11	0,8857	907,924	909,124	910,428	911,635	912,542	913,654	914,565	915,580	916,393
¹⁴ C -12	0,8863	913,639	914,947	916,158	917,372	918,386	919,606	920,421	921,442	922,260
¹⁴ C -13	0,8852	912,058	913,264	914,474	915,686	916,800	917,816	918,833	919,751	920,670
¹⁴ C -14	0,8842	908,873	910,277	911,484	912,693	913,805	914,615	915,834	916,647	917,565
¹⁴ C -15	0,8857	910,591	911,895	913,102	914,313	915,425	916,439	917,454	918,371	919,186
¹⁴ C -16	0,8870	914,882	916,191	917,403	918,618	919,633	920,548	921,567	922,486	923,305

Filtro	TDCR	kB (cm.MeV ⁻¹) / Atividade (kBq/g)								
		0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015
S/F	0,8734	911,771	913,193	914,415	915,742	916,868	918,100	919,129	920,057	921,090
F1	0,8662	910,797	912,243	913,797	915,253	916,504	917,549	918,912	920,068	921,227
F2	0,8487	910,979	912,425	913,980	915,436	916,688	917,733	919,096	920,252	921,412
F3	0,8272	910,911	912,489	914,283	915,872	917,254	918,426	919,923	921,209	922,284
F4	0,7991	910,867	912,807	914,539	916,169	917,804	919,446	920,763	922,304	923,630
F5	0,7952	911,445	913,503	915,243	916,989	918,632	920,172	921,716	923,044	924,375
F6	0,7808	911,255	913,338	915,101	916,870	918,757	920,205	921,770	923,340	924,802
F7	0,7638	910,402	912,397	914,290	916,191	917,987	919,678	921,148	922,850	924,444

Tabela 5.14 Concentração de Atividade de fonte ¹⁴C-06, obtida pelo método TDCR, com uso de filtros, em Hisafe3.

Figura 5.4 Concentração de Atividade de fonte ¹⁴C-06, obtida pelo método TDCR, com uso de filtros, em Hisafe3.

A tabela 5.14 e a figura 5.4 apresentam os resultados das medições realizadas com o uso de filtros cinza para Hisafe3, com a finalidade do ajuste do valor do parâmetro de extinção kB, pela variação da eficiência.

Os resultados das medições das fontes de ¹⁴C-LMRI, realizadas pelo método CIEMAT/NIST, são apresentados nas tabelas 5.15 e 5.16, em Hisafe3 e Ultima Gold, respectivamente.

Nuclideo Solução F		Fonte	Massa	СРМ	SQPE	Atividade		
			(g)			(kBq/g)		
	Padrão ³ H_P	³ H-01	0,051202	31517	786,9			
		³ H-02	0,057558	29883	763,0	28,755		
		³ H-03	0,052493	20099	725,8			
		³ H-04	0,056998	17280	697,2			
		³ H-05	0,060261	14607	676,3			
		³ H-06	0,052473	11789	674,0			
		³ H-07	0,057178	10742	650,3			
140		³ H-08	0,056658	9422	658,7			
C		¹⁴ C-01	0,005436	273290	786,3	912,259		
		¹⁴ C-02	0,006947	347559	786,2	911,224		
		¹⁴ C-03	0,003560	269540	786,3	916,541		
	14 c. v.	¹⁴ C-04	0,008088	405416	786,0	913,070		
	C_X	¹⁴ C-05	0,005035	252421	785,5	913,472		
		¹⁴ C-06	0,007818	391917	785,8	913,256		
		¹⁴ C-07	0,005326	266578	785,5	911,995		
		¹⁴ C-08	0,007086	354255	785,0	911,200		

Tabela 5.15 Concentração de Atividade da solução ¹⁴C-LMRI, obtida pelo método CIEMAT/NIST, em Hisafe3.

Nuclideo	Solução Fonte		Massa CPM		SQPE	Atividade		
			(g)			(kBq/g)		
	Padrão ³ H_P	³ H-09	0,050441	34424	795,6			
		³ H-10	0,054766	32184	776,7			
		³ H-11	0,044335	18912	738,4			
		³ H-12	0,047949	16229	708,3	20 755		
		³ H-13	0,050782	14607	681,4	28,755		
		³ H-14	0,053564	11789	676,5			
		³ H-15	0,049510	10742	657,7			
140		³ H-16	0,052924	9422	630,3			
C		¹⁴ C-09	0,008839	448226	794,4	915,217		
		¹⁴ C-10	0,008969	453318	794,8	911,980		
		¹⁴ C-11	0,004895	246525	794,7	908,784		
	14 c. v.	¹⁴ C-12	0,003604	182790	794,5	915,317		
	C_X	¹⁴ C-13	0,004315	218400	795,2	913,051		
		¹⁴ C-14	0,005436	274459	795,3	910,742		
		¹⁴ C-15	0,005055	255416	794,3	912,100		
		¹⁴ C-16	0,004395	223119	795,7	915,521		

Tabela 5.16 Concentração de Atividade da solução ¹⁴C-LMRI, obtida pelo método CIEMAT/NIST, em Ultima Gold.
5.2.1 Aplicação do teste estatístico de Grubbs às medições das fontes de ¹⁴C

Os valores de Concentração de Atividade das fontes obtidas pelos dois métodos de padronização foram submetidos ao teste estatístico de Grubbs (Outlier), no nível de confiança de 95 %, para a verificação da consistência dos resultados e a tomada de decisão quanto à exclusão de dados inconsistentes.

No método TDCR, três fontes apresentaram inconsistências nas medições obtidas em Hisafe3, ¹⁴C-03, ¹⁴C-06 e ¹⁴C-08, as quais foram excluídas do cálculo da média da Concentração da Atividade da solução de ¹⁴C.

No método CIEMAT/NIST, a fonte ¹⁴C-03 apresentou inconsistência na medição e foi excluída do cálculo da média da Concentração da Atividade da solução de ¹⁴C.

5.2.2 Determinação da Concentração de Atividade da solução de ¹⁴C

O procedimento de ajuste do valor do parâmetro de extinção kB foi realizado a partir das medições obtidas com o uso dos filtros cinza, de densidade ótica crescente, colocados na superfície externa dos frascos da fonte ¹⁴C-06 em Hisafe3. O gráfico apresentado nas figura 5.4 para Hisafe3, obtido a partir da tabela 5.14, mostra que o melhor ajuste linear ou menor variação da Concentração de Atividade foi obtido para o parâmetro de extinção kB igual a 0,008 cm.MeV⁻¹.

A Concentração de Atividade da solução ¹⁴C-LMRI obtida pelo método TDCR foi determinada pela média dos valores relacionados do parâmetro de extinção kB igual a 0,008 cm.MeV⁻¹, para Hisafe3 e Ultima Gold, das tabelaa 5.12 e 5.13, respectivamente, consideradas as exclusões realizadas pela aplicação do teste estatístico de Grubbs.

No método CIEMAT/NIST, a Concentração de Atividade foi obtida pela média dos valores determinados para as fontes em Hisafe3 e Ultima Gold das tabelas 5.15 e 5.16, respectivamente, considerada a exclusão da fonte ¹⁴C-03, conforme o teste estatístico de Grubbs.

5.2.3 Avaliação das incertezas da padronização da solução de ¹⁴C

A avaliação de incertezas com o uso do método TDCR de cintilação líquida para a padronização da solução ¹⁴C-LMRI, levou em consideração os componentes de incertezas provenientes dos parâmetros atômicos e nucleares e os resultantes do procedimento experimental. As tabelas 5.17, 5.18 e 5.19, 5.20, apresentam a avaliação

das incertezas da padronização da solução da solução ¹⁴C-LMRI pelos métodos TDCR e CIEMAT/NIST, respectivamente.

Componente de Incerteza	Tipo	%
Massa	В	0,05
Contagens	А	0,15
Atividade das fontes	А	0,05
Atividade (determinação de kB pelo uso de filtros)	А	0,05
Dados atômicos e nucleares	В	< 0,01
Incerteza total (k = 1)		0,17

Tabela 5.17 Incertezas da padronização da solução ¹⁴C-LMRI pelo método TDCR, em Hisafe3.

Tabela 5.18 Incertezas da padronização da solução ¹⁴C-LMRI pelo método TDCR, em Ultima Gold.

Componente de Incerteza	Tipo	%
Massa	В	0,05
Contagens	А	0,16
Atividade das fontes	А	0,25
Atividade (determinação de kB pelo uso de filtros)	А	0,05
Dados atômicos e nucleares	В	< 0,01
Incerteza total (k = 1)		0,31

Componente de Incerteza	Tipo	%
Atividade do padrão ³ H	В	0,03
Massa do padrão ³ H	В	< 0,01
Extinção do padrão ³ H (SQPE)	А	0,03
Contagens do padrão ³ H	А	0,03
Parâmetros atômicos e nucleares	В	0,07
Assimetria das fotomultiplicadoras	В	0,25
Parâmetro de extinção (kB)	В	0,23
Massa das fontes de ¹⁴ C	В	0,06
Extinção das fontes de ¹⁴ C (SQPE)	А	0,04
Contagens das fontes de ¹⁴ C	А	0,07
Atividade das fontes de ¹⁴ C	А	0,10
Incerteza total (k = 1)		0,38

Tabela 5.19 Incertezas da padronização da solução ¹⁴C-LMRI pelo método CIEMAT/NIST. em Hisafe3.

Tabela 5.20 Incertezas da padronização da solução ¹⁴C-LMRI pelo método CIEMAT/NIST, em Ultima Gold.

Componente de Incerteza	Tipo	%
Atividade do padrão ³ H	В	0,03
Massa do padrão ³ H	В	< 0,01
Extinção do padrão ³ H (SQPE)	Α	0,04
Contagens do padrão ³ H	А	0,03
Parâmetros atômicos e nucleares	В	0,07
Assimetria das fotomultiplicadoras	в	0,25
Parâmetro de extinção (kB)	в	0,23
Massa das fontes de ¹⁴ C	в	0,05
Extinção das fontes de ¹⁴ C (SQPE)	Α	0,03
Contagens das fontes de ¹⁴ C	Α	0,08
Atividade das fontes de 14C	А	0,27
Incerteza total (k = 1)		0,45

5.2.4 Resultados da padronização da solução de ¹⁴C

Os resultados da padronização da solução ¹⁴C-LMRI em Hisafe3, obtidos pelos métodos TDCR e CIEMAT/NIST, apresentados na tabela 6.21 e pelo respectivo gráfico da figura 6.5, são consistentes entre si, dentro de uma incerteza padrão (k = 1).

Tabela 5.21 Resultados da padronização da solução ¹⁴C-LMRI, pelos métodos TDCR e CIEMAT/NIST, em Hisafe3 e Ultima Gold.

Método	Coquetel	Atividade	[ncerteza (k = 1)	
		(kBq/g)	(%)	
TDCD	Hisafe3	912,136	0,17	
IDCK	Ultima Gold	912,551	0,31	
CIEMAT/NIST	Hisafe3	912,203	0,38	
	Ultima Gold	912,839	0,45	

Figura 5.5 Resultado da padronização de 14 C, pelos métodos TDCR e CIEMAT/NIST, em Hisafe3 e Ultima Gold, (k = 1).

5.3 Padronização de ⁹⁹Tc

A padronização da solução de ⁹⁹Tc-IPL/UK, proveniente de comparação-chave promovida pelo BIPM, em 2012, foi realizada em coquetel Hisafe3 pelo método TDCR, coincidência $4\pi\beta(CP)-\gamma(NaI)$ e anticoincidência $4\pi\beta(CL)-\gamma(NaI)$. As medições nos sistemas de coincidência e anticoincidência foram realizadas usando ⁶⁰Co como traçador.

Os resultados das medições das 9 fontes de ⁹⁹Tc realizadas no sistema TDCR são apresentados na tabela 5.22 para Hisafe3, em termos dos valores de TDCR e Concentração de Atividade, correspondentes aos respectivos valores do parâmetro de extinção kB, no intervalo de 0,007 a 0,015 cm.MeV⁻¹.

A tabela 5.23 apresenta os resultados das medições realizadas com o uso de filtros cinza para Hisafe3, com a finalidade do ajuste do valor do parâmetro de extinção kB pela variação da eficiência.

Fonto	TDCP	kB (cm.MeV ⁻¹) / Atividade (kBq/g)										
ronte	IDCK	0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015		
⁹⁹ Tc -01	0,9344	56,295	56,360	56,402	56,456	56,492	56,541	56,577	56,613	56,655		
⁹⁹ Tc -02	0,9339	56,295	56,349	56,391	56,451	56,487	56,541	56,565	56,613	56,637		
⁹⁹ Tc -03	0,9321	56,306	56,360	56,413	56,462	56,504	56,552	56,582	56,624	56,667		
⁹⁹ Tc -04	0,9333	56,340	56,399	56,447	56,489	56,538	56,580	56,628	56,658	56,689		
⁹⁹ Tc -05	0,9330	56,368	56,434	56,476	56,524	56,561	56,609	56,645	56,693	56,724		
⁹⁹ Tc -06	0,9324	56,322	56,364	56,418	56,466	56,514	56,556	56,593	56,629	56,659		
⁹⁹ Tc -07	0,9326	56,316	56,376	56,430	56,472	56,508	56,556	56,593	56,629	56,665		
⁹⁹ Tc -08	0,9320	56,364	56,406	56,466	56,508	56,563	56,587	56,635	56,672	56,708		
⁹⁹ Tc -09	0,9328	56,373	56,421	56,475	56,523	56,560	56,608	56,644	56,686	56,717		

Tabela 5.22 Concentração de Atividade das fontes da solução ⁹⁹Tc-IPL/UK obtida pelo método TDCR, em Hisafe3.

Easte TDCD		kB (cm.MeV ⁻¹) / Atividade (kBq/g)									
Fonce TDCK	IDCK	0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015	
S/F	0,9344	56,332	56,380	56,434	56,476	56,512	56,554	56,602	56,644	56,669	
F1	0,9220	56,238	56,408	56,347	56,402	56,456	56,505	56,554	56,584	56,627	
F2	0,9096	56,286	56,347	56,408	56,476	56,525	56,568	56,611	56,673	56,710	
F3	0,9043	56,379	56,440	56,514	56,570	56,632	56,675	56,731	56,775	56,824	
F4	0,8980	56,277	56,338	56,406	56,468	56,531	56,574	56,643	56,693	56,737	
F5	0,8882	56,334	56,402	56,465	56,534	56,603	56,660	56,717	56,774	56,818	
F6	0,8795	56,324	56,399	56,468	56,538	56,608	56,665	56,735	56,786	56,843	

Tabela 5.23 Concentração de Atividade da solução ⁹⁹Tc-IPL/UK, obtida pelo método TDCR, com uso de filtros, em Hisafe3.

Figura 5.6 Concentração de Atividade de fonte ⁹⁹Tc-01, obtida pelo método TDCR, com uso de filtros, em Hisafe3.

5.3.1 Aplicação do teste estatístico de Grubbs às medições das fontes de ⁹⁹Tc

Os valores de Concentração de Atividade das fontes obtidos pelo método TDCR, foram submetidos ao teste estatístico de Grubbs (Outlier), no nível de confiança de 95 %, para a verificação da consistência dos resultados e a tomada de decisão quanto à possível exclusão de dados inconsistentes.

5.3.2 Determinação da Concentração de Atividade da solução de ⁹⁹Tc

O procedimento de ajuste do valor do parâmetro de extinção kB, foi realizado a partir das medições obtidas com o uso dos filtros cinza, de densidade ótica crescente, colocados sobre a superfície externa dos frascos da fonte ⁹⁹Tc em Hisafe3. O gráfico apresentado nas figura 5.6 para Hisafe3, obtido a partir da tabela 5.23 relativa ao uso de filtros cinza, mostra que o melhor ajuste linear ou menor variação da Concentração de Atividade foi obtida no valor do parâmetro de extinção kB igual a 0,008 cm.MeV⁻¹.

No método TDCR, a Concentração de Atividade da solução de ⁹⁹Tc-IPL/UK foi determinada pela média dos valores relacionados ao parâmetro de extinção kB igual 0,008 cm.MeV⁻¹ da tabela 5.22, para Hisafe3.

5.3.3 Avaliação das incertezas da padronização da solução de 99 Tc

A avaliação de incertezas com o uso do método TDCR de cintilação líquida para a padronização da solução de ⁹⁹Tc-IPL/UK, apresentada na tabela 5.24, levou em consideração os componentes de incertezas provenientes dos parâmetros atômicos e nucleares e os resultantes do procedimento experimental.

5.3.4 Resultados da padronização da solução de ⁹⁹Tc

Os resultados da padronização da solução de ⁹⁹Tc-IPL/UK, da comparaçãochave internacional promovida pelo BIPM, obtidos pelos métodos TDCR, Coincidência $4\pi \beta$ (CP)– γ (NaI) e Anticoincidência $4\pi \beta$ (CL)– γ (NaI), apresentados na tabela 5.25 e pelo respectivo gráfico da figura 5.7, são consistentes entre si, dentro de uma incerteza padrão (k = 1).

Componente de Incerteza	Tipo	Método / (%)					
		TDCR	Coincidência	Anticoincidência			
Contagens	А	0,21	Incluida no ajuste	Incluida no ajuste			
Ajuste da curva de extrapolação	А		0,53	0,38			
Massa	В	0,05	0,05	0,05			
Radiação de fundo	А		0,2	0,29			
Tecnica de tempo vivo	В	0,01		0,01			
Meia vida do ⁹⁹ Tc	В	< 0,001	< 0,001	< 0,001			
Tempo morto	В		0,04	-			
Tempo de resolução	В		0,04				
Efeito Gandy	В		0,08				
Atividade do 60Co	В		0,22	0,22			
Atividade de ⁹⁹ Tc (ajuste de kB)	А	0,05					
Atividade das fontes de 99Tc	А	0,08					
Fator de forma do ⁹⁹ Tc	В	0,21					
Incerteza (k = 1)		0,32	0,62	0,53			

Tabela 5.24 Incerteza da padronização da solução ⁹⁹Tc-IPL/UK, pelos métodos TDCR, Coincidência $4\pi\beta$ (CP)- γ (NaI) e Anticoincidência $4\pi\beta$ (CL)- γ (NaI), em Hisafe3.

Tabela 5.25 Resultados da padronização da solução ⁹⁹Tc-IPL/UK, pelos métodos TDCR, Coincidência $4\pi \beta$ (CP)– γ (NaI) e Anticoincidência $4\pi\beta$ (CL)– γ (NaI), em Hisafe3.

Nuclideo	Método	Atividade	Incerteza (k = 1)
		(kBq/g)	(%)
	TDCR	56,385	0,32
⁹⁹ Tc	Coincidência $4\pi \ \beta(CP)$ - $\gamma(NaI)$	56,750	0,62
	Anticoincidência $4\pi \ \beta(CL) - \gamma(NaI)$	56,500	0,53

Figura 5.7 Resultados da padronização da solução ⁹⁹Tc-IPL/UK, pelos métodos TDCR, Coincidência $4\pi\beta$ (CP)– γ (NaI) e Anticoincidência $4\pi\beta$ (CL)– γ (NaI), em Hisafe3, (k = 1).

5.4 Padronização do 68 Ge/68 Ga

O código TDCR07c foi modificado para se adequar ao modelo KLM do esquema de decaimento do ⁶⁸Ge/⁶⁸Ga, o qual se constitui num esquema simplificado para as diversas possibilidades de decaimento desses radionuclídeos, apresentado na figura 5.8.

No ⁶⁸Ge, o cálculo do modelo KLM levou em consideração as probabilidades da captura eletrônica nas três camadas e as respectivas probabilidades e energias dos raios X emitidos nos rearranjos atômicos. As probabilidades de absorção dos raios X no arranjo experimental e no coquetel de cintilação, que constituem o sistema de detecção do TDCR usado, foram calculadas pelo método de Monte Carlo, com o uso dos códigos PENELOPE-2008/Pendbase/material.f/Gview/Pencylsl.

No ⁶⁸Ga, o modelo KLM levou em consideração as probabilidades da emissões gama e de pósitrons, assim como as energias de aniquilação dos pósitrons. As probabilidades de absorção da emissão gama, dos pósitrons e da emissão resultante da aniquilação dos pósitrons, para o sistema de detecção do TDCR, foram obtidas pela execução dos códigos do PENELOPE-2008.

O conjunto desses dados atômicos e nucleares e os obtidos pelos códigos de Monte Carlo, foram aplicados ao código TDCR07c para o cálculo da eficiência de ⁶⁸Ge/⁶⁸Ga.

A figura 5.9 e as tabelas 5.26, e 5.27 apresentam o esquema do modelo KLM de decaimento e os respectivos dados atômicos e nucleares do ⁶⁸Ge e do ⁶⁸Ga, os quais foram inseridos no código computacional para o cálculo da eficiência de detecção.

Figura 5.8 Esquema simplificado do decaimento de ⁶⁸Ge/⁶⁸Ga.

Probabilidade

$$K_{Copture} X_{K_{\infty}obs} \frac{X_{L}}{Auger} P_{K} * W_{K} * \frac{P_{K_{\infty}}}{\Sigma P_{X_{K}}} * P_{absK_{\infty}} * X_{K_{\infty}obs}$$

$$X_{K_{\infty}oscope} \frac{X_{L}}{Auger} P_{K} * W_{K} * (1 - P_{absK_{\infty}})$$

$$X_{K_{\beta}obs} P_{K} * W_{K} * \frac{P_{K_{\beta}}}{\Sigma P_{X_{K}}} * P_{absK_{\beta}} * X_{K_{\beta}obs}$$

$$X_{K_{\beta}obs} P_{K} * W_{K} * (1 - P_{absK_{\beta}})$$

$$Auger KLL P_{K} * (1 - W_{K}) * \frac{P_{A_{KLL}}}{P_{Auger}}$$

$$Auger KLX P_{K} * (1 - W_{K}) * \frac{P_{A_{KLL}}}{P_{Auger}}$$

$$L_{Copture} \frac{X_{L}}{Auger} P_{L}$$

$$M_{Copture} P_{M}$$

Evento

Figura 5.9 Esquema KLM simplificado do decaimento de ⁶⁸Ge/⁶⁸Ga.

Transição da Captura Eletrônica (0,	0)
E (keV)	106
P _{ce}	1,00
P _K	0,8639
P _L	0,1151
P _M	0,0196
Fluorescência	
W _K	0,517
WL	0,0123
Radiações X	
$E_{K\alpha}$ (keV)	9,24
$E_{K\beta}$ (keV)	10,29
E _L (keV)	1,13
$P_{K\alpha}$	0,8697
$P_{K\alpha}$	0,1303
P _{absorção} (Kα)	0,8352
Pabsorção (Kβ)	0,781
Elétrons Auger	
E _{KLL} (keV)	7,89
E _{KLX} (keV)	9,07
E _{KXY} (keV	10,2
E∟ (keV)	0,93
P _{KLL}	0,7621
P _{KLX}	0,2218
Ρκχγ	0,0161

Tabela 5.26 Dados atômicos e nucleares do ⁶⁸Ge.

Tranci	$c \tilde{c} e s \beta^{+} (0,0) (0,1)$	
Transição	çues μ (0,0) (0,1) (0,0)	(0, 1)
E (keV)	821 7	1899 1
\mathbf{P}_{0}	0.0120	0.8794
Transicão da Ca	aptura Eletrônica (0.0	(0.1)
Tunisição da Oc	(0,0)	(0,1)
E (keV)	2921.1	1843.7
P _{ce}	0.0894	0.0180
Pĸ	0.8847	0.8844
PL	0,0980	0,0983
P _M	0,0162	0,0162
P _{ce (sem gama)}	0,10	074
P _{ce (com gama)}	0,0	012
Tr	ansição Gama	
E (kev)	-	1077
Ργ		0,0322
P _{abosrção (γ)}		0,0664
F	Fluorescência	
W _K		0,486
W _L		0,0108
J	Radiações X	
E _{Kα} (keV)		8,63
E _{Kβ} (keV)		9,6
E _L (keV)		0,99
P _{Kα}		0,8759
$P_{K\beta}$		0,1241
Pabsorção(Kα)		0,8636
P _{absorção (Kβ)}		0,8174
E	létrons Auger	
E _{KLL} (keV)		7,38
E _{KLX} (keV)		8,37
E _{KXY} (keV)		9,54
E _L (keV)		0,87
P _{KLL}		0,7674
P _{KLX}		0,2172
P _{KXY}		0,0154

Tabela 5.27 Dados atômicos e nucleares do ⁶⁸Ga.

A mesma versão do código TDCR07c, especificamente desenvolvida para ⁶⁸Ge/⁶⁸Ga pelo LNHB, foi usada pelo LNMRI na intercomparação realizada entre os laboratórios, para o cálculo teórico da eficiência de detecção. Os resultados das medições realizadas no sistema TDCR do LNMRI são apresentados na tabela 5.28. Os resultados da variação da eficiência realizada pelo uso de filtros cinza são apresentados na tabela 5.29 e figura 5. 10.

Fonto	TDCP	kB (cm.MeV ⁻¹) / Atividade (Bq/g)								
Fonce TDCF	IDCK	0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015
⁶⁸ Ge/ ⁶⁸ Ga-01	0,7448	80,706	80,635	80,585	80,539	80,460	80,429	80,414	80,387	80,374
⁶⁸ Ge/ ⁶⁸ Ga-02	0,7445	81,290	81,226	81,178	81,130	81,049	81,015	80,980	80,963	80,928
⁶⁸ Ge/ ⁶⁸ Ga-03	0,7461	80,984	80,920	80,890	80,862	80,803	80,790	80,761	80,724	80,683
⁶⁸ Ge/ ⁶⁸ Ga-04	0,7441	80,887	80,846	80,774	80,751	80,638	80,632	80,570	80,548	80,517
⁶⁸ Ge/ ⁶⁸ Ga-05	0,7469	81,228	81,176	81,163	81,126	81,100	81,080	81,029	81,010	81,000
⁶⁸ Ge/ ⁶⁸ Ga-06	0,7480	80,652	80,587	80,583	80,553	80,514	80,516	80,470	80,437	80,441
⁶⁸ Ge/ ⁶⁸ Ga-07	0,7486	81,268	81,224	81,199	81,174	81,150	81,145	81,109	81,075	81,078
⁶⁸ Ge/ ⁶⁸ Ga-08	0,7471	81,003	80,949	80,947	80,901	80,873	80,887	80,808	80,806	80,797
⁶⁸ Ge/ ⁶⁸ Ga-09	0,7488	80,748	80,709	80,680	80,657	80,631	80,631	80,599	80,564	80,560
⁶⁸ Ge/ ⁶⁸ Ga-10	0,7460	81,251	81,189	81,159	81,128	81,069	81,057	81,027	80,991	80,948

Tabela 5.28 Concentração de Atividade das fontes da solução ⁶⁸Ge/⁶⁸Ga-Eckert& Ziegler, obtida pelo método TDCR, em Hisafe3.

Tabela 5.29 Concentração de Atividade da fonte ⁶⁸Ge/⁶⁸Ga-03, obtida pelo método TDCR, com uso de filtros, em Hisafe3.

Filtro	TDCP	kB (cm.MeV ⁻¹) / Atividade (kBq/g)										
	IDCK	0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015		
S/F	0,7461	80,984	80,920	80,890	80,862	80,803	80,790	80,761	80,724	80,683		
F1	0,7587	80,825	80,788	80,781	80,759	80,747	80,738	80,726	80,705	80,700		
F2	0,7740	80,868	80,867	80,854	80,848	80,842	80,837	80,823	80,826	80,806		
F3	0,7859	80,847	80,855	80,839	80,841	80,817	80,816	80,804	80,803	80,801		

5.4.1 Aplicação do teste estatístico de Grubbs às medições das fontes de ⁶⁸Ge/⁶⁸Ga

Os valores de Concentração de Atividade das fontes de ⁶⁸Ge/⁶⁸Ga obtidos pelo método TDCR, foram submetidos ao teste estatístico de Grubbs (Outlier), no nível de confiança de 95 %, para a verificação da coerência dos valores e a tomada de decisão quanto à possível exclusão de dados inconsistentes.

5.4.2 Determinação da Concentração de Atividade da solução de ⁶⁸Ge/⁶⁸Ga.

O procedimento de ajuste do valor do parâmetro de extinção kB, foi realizado a partir das medições obtidas com o uso dos filtros cinza de densidade ótica crescente, colocados sobre a superfície externa dos frascos da fonte ⁶⁸Ge/⁶⁸Ga, em Hisafe3.

O gráfico apresentado na figura 5.10 para Hisafe3, obtido a partir da tabela 5.29, relativa ao uso de filtros cinza, mostra que o melhor ajuste linear ou menor variação da

Concentração de Atividade foi obtida para o parâmetro de extinção kB igual a 0,010 cm.MeV⁻¹.

A Concentração de Atividade da solução de ⁶⁸Ge/⁶⁸Ga-Eckert & Ziegler, foi determinada pela média dos valores relacionados ao parâmetro de extinção kB igual 0,010 cm.MeV⁻¹, em Hisafe3, da Tabela 5.28.

5.4.3 Avaliação das incertezas da padronização da solução de ⁶⁸Ge/⁶⁸Ga.

A avaliação de incertezas com o uso do método TDCR de cintilação líquida para a padronização da solução ⁶⁸Ge/⁶⁸Ga-Eckert & Ziegler, apresentada na tabela 5.30 levou em consideração os componentes de incertezas provenientes dos parâmetros atômicos e nucleares e os resultantes do procedimento experimental.

Tabela 5.30 Incertezas da padronização de ⁶⁸Ge/⁶⁸Ga-Eckert & Ziegler, obtida pelo método TDCR.

Componente de Incerteza	Туре	LNMRI	LNHB
Massa	В	0,05	0,05
Contagens	А	0,26	0,11
Atividades das fontes	А	0,31	0,11
Ajuste do parâmetro de extinção kB	А	0,06	0,06
Parâmetros atômicos e nucleares	В	0,28	0,28
Incerteza (k = 1)		0,50	0,33

5.4.4 Resultados da padronização da solução de 68 Ge/68 Ga

Os resultados da padronização da solução de ⁶⁸Ge/⁶⁸Ga-Eckert & Ziegler, obtidos pelo método TDCR no LNMRI e LNHB, apresentados na tabela 5.31 e pelo respectivo gráfico da figura 5.11, são consistentes entre si e com os das medições obtidas por espectrometria gama realizada pela empresa fornecedora da solução do radionuclídeo (Eckert & Ziegler) e Anticoincidência $4\pi \beta$ (CL)– γ (NaI), dentro de uma incerteza padrão (k = 1).

	Método	Atividade	Incerteza
		(kBq/g	(k = 1)
Eckert & Ziegler	Espectrometria gama	81,107	1,40
LNMRI	Anticoincidência $4\pi \beta(CL) - \gamma(NaI)$	81,981	0,19
LNMRI	TDCR	80,882	0,50
LNHB	TDCR	81,004	0,33

Tabela 5.31 Resultados da padronização da solução de ⁶⁸Ge/⁶⁸Ga-Eckert & Ziegler, em Hisafe3.

Figura 5.11 Resultados da padronização de solução ${}^{68}\text{Ge}/{}^{68}\text{Ga-Eckert}$ & Ziegler, pelos métodos de Espectrometria gama, Anticoincidência 4π β (CL)– γ (NaI) e TDCR, (k = 1).

5.5. Padronização do ^{99m}Tc

O esquema de decaimento do ⁹⁹Tc apresenta probabilidade significativa para a emissão gama de 140,511 keV que ocorre praticamente sem conversão interna, enquanto que a emissão gama de 142,675 keV apresenta probabilidade significativa para a conversão interna. A figura 5.12 apresenta o esquema de decaimento.

5.12 Esquema simplificado de decaimento do $^{99}Mo/^{99m}Tc$.

As modificações no código TDCR07c foram realizadas para computar essas características do decaimento. Assim, o código computacional prevê a aquisição de dados do espectro Compton resultante da interação gama com o líquido cintilador e demais componentes do sistema de detecção do sistema TDCR e dos dados atômicos e nucleares do esquema de decaimento, inclusive da conversão interna com de elétrons de baixa energia, que são totalmente absorvidos no coquetel de cintilação. A tabela 5.32 apresenta a síntese dos dados.

O código Penelope/Pencylsl foi executado para a determinação do espectro de absorção Compton da emissão gama de 140,511 keV no sistema de detecção do TDCR.

O resultado, em termos da energia absorvida e probabilidade de absorção é apresentado na Figura 5.13.

Transições ga	Transições gama e Coeficientes de Conversão Interna									
Transição	(2,0)									
E (keV)	140,511	142,675								
Ργ	0,99	0,01								
aT	0,119	40,9								
	Emissão de elétr	ons								
Transição	Energia (keV)	Elétrons/100 desintegrações								
ec (2,1) M	1.0	0,885								
ec (2,1) N	1,9	0,115								

Tabela 5.32 Dados atômicos e nucleares de ^{99m}Tc.

Figura 5.13 Espectro Compton de emissão gama do ^{99m}Tc.

No LNHB/França, medições preliminares foram realizadas em diferentes sistemas com o objetivo de verificar a aplicabilidade do método TDCR, em termos dos resultados obtidos para a eficiência de detecção, bem como, a adequação do código computacional elaborado a partir de modificações no código TDCR07c para o ^{99m}Tc.

Uma solução de ^{99m}Tc, em soro fisiológico, obtida da medicina nuclear, foi preparada e medida por diferentes métodos: TDCR, câmara de ionização, espectrometria gama.

No sistema TDCR, foram medidas 5 fontes, preparadas a partir da dissolução de alíquotas da solução de ^{99m}Tc em frasco de vidro com 10 mL de coquetel de cintilação Ultima Gold. A Concentração de Atividade foi determinada para o valor do parâmetro de extinção kB igual a 0,010 cm.MeV⁻¹. A tabela 5.33 mostra os resultados obtidos para a padronização da solução de ^{99m}Tc, no LNHB.

Método	Concentração de Atividade	Incerteza (k = 1)
	(kBq/g)	(%)
TDCR	62,830	0,35
Espectrometria gama	61,500	1,5
Câmara de Ionização	62,840	4,6

Tabela 5.33 Resultados da padronização de solução de ^{99m}Tc, pelos métodos TDCR, Espectrometria gama e Câmara de Ionização, realizada no LNHB.

No LNMRI foi adotado o mesmo procedimento experimental e código computacional do LNHB para a padronização pelo método TDCR O procedimento experimental constou da realização de 5 comparações entre os diversos métodos de medição existentes no LNMRI, com o objetivo de prover resultados para a comparação-chave BIPM.RI(II)-K4.Tc-99m.

Os resultados obtidos pelo método TDCR são apresentados nas tabelas 5.34, 5.35, 5,36, 5,37 e 5.38, sendo essa última medida no SIRTI/BIPM. A tabela 5.39 e a figura 5.14, apresentam os resultados obtidos pelo TDCR para o ajuste do parâmetro de extinção kB, em cujo valor a Concentração de Atividade da solução de ^{99m}Tc foi determinada em todas as comparações.

Tabela 5.34 Comparação 1: Concentração de Atividade de fontes de solução de ^{99m}Tc, obtida pelo método TDCR, em Hisafe3.

Fonto	TDCR	kB (cm.MeV ⁻¹) / Atividade (kBq/g)									
Fonte		0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015	
^{99m} Tc-01	0,7520	649,608	645,270	641,885	639,023	636,438	634,277	632,176	630,459	629,006	
^{99m} Tc-02	0,7521	640,905	636,622	633,284	630,461	627,909	625,776	623,702	622,009	620,572	
^{99m} Tc-03	0,7525	636,536	632,232	628,935	626,137	623,561	621,451	619,373	617,715	616,246	
^{99m} Tc-04	0,7525	646,183	641,816	638,468	635,628	633,013	630,872	628,763	627,079	625,588	
^{99m} Tc-05	0,7518	642,347	638,084	634,728	631,895	629,346	627,219	625,151	623,441	622,026	
^{99m} Tc-06	0,7520	641,453	637,176	633,832	631,005	628,454	626,322	624,249	622,551	621,121	
^{99m} Tc-07	0,7537	641,759	637,447	634,028	631,206	628,505	616,587	624,293	622,640	621,044	
^{99m} Tc-08	0,7518	641,564	637,306	633,954	631,125	628,579	626,454	624,388	622,680	621,267	
^{99m} Tc-09	0,7501	645,252	641,165	637,734	634,854	632,358	630,288	628,253	626,589	625,128	
^{99m} Tc-10	0,7508	646,091	641,922	638,504	635,640	633,116	631,016	628,977	627,256	625,829	

Tabela 5.35 Comparação 2: Concentração de Atividade de fontes de solução de ^{99m}Tc, obtida pelo método TDCR, em Hisafe3.

Fonto	TDCR	TDCR									
		0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015	
^{99m} Tc-01	0,7517	14575,057	14478,564	14402,335	14338,020	14280,275	14232,090	14185,246	14146,328	14114,444	
^{99m} Tc-02	0,7521	14451,657	14354,852	14279,670	14216,041	14158,251	14110,255	14063,403	14025,338	13992,753	
^{99m} Tc-03	0,7516	14521,812	14425,939	14349,893	14285,780	14228,334	14180,415	14133,838	14094,939	14063,401	
^{99m} Tc-04	0,7517	14491,634	14395,618	14319,852	14255,915	14198,476	14150,541	14103,938	14065,278	14033,511	
^{99m} Tc-05	0,7522	14492,684	14395,438	14320,102	14256,312	14198,230	14150,116	14103,072	14064,975	14032,156	
^{99m} Tc-06	0,7520	14412,322	14316,220	14241,086	14177,575	14120,284	14072,370	14025,804	13987,638	13955,520	
^{99m} Tc-07	0,7516	14424,674	14329,392	14253,873	14190,195	14133,116	14085,501	14039,218	14000,602	13969,232	
^{99m} Tc-08	0,7525	14431,025	14333,721	14258,741	14195,308	14136,949	14089,113	14042,028	14004,405	13971,145	
^{99m} Tc-09	0,7512	14568,591	14473,465	14396,799	14332,347	14275,063	14227,347	14180,998	14141,485	14110,099	
^{99m} Tc-10	0,7523	14451,966	14354,471	14279,716	14216,135	14158,032	14110,079	14063,082	14025,202	13992,271	

Tabela 5.36. Comparação 3: Concentração de Atividade de fontes de solução de ^{99m}Tc, obtida pelo método TDCR, em Hisafe3.

Fonte		TDCP		kB (cm.MeV ⁻¹) / Atividade (kBq/g)									
		IDCK	0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015		
	^{99m} Tc-01	0,7532	1886,442	1873,750	1863,768	1855,505	1847,692	1841,377	1835,220	1830,417	1825,864		
	^{99m} Tc-02	0,7537	1869,667	1857,105	1847,145	1838,923	1831,056	1824,743	1818,783	1813,968	1809,320		
	^{99m} Tc-03	0,7533	1870,285	1857,704	1847,783	1839,602	1831,839	1825,570	1819,486	1814,716	1810,184		
	^{99m} Tc-04	0,7512	1900,608	1888,186	1878,189	1869,782	1862,305	1856,076	1850,025	1844,875	1840,690		
	^{99m} Tc-05	0,7522	1873,836	1861,192	1851,520	1843,273	1835,760	1829,539	1823,455	1818,531	1814,284		
	^{99m} Tc-06	0,7525	1873,042	1860,414	1850,673	1842,442	1834,858	1828,665	1822,536	1817,658	1813,331		
	^{99m} Tc-07	0,7529	1872,214	1859,604	1849,784	1841,570	1833,903	1827,675	1821,558	1816,734	1812,314		
	^{99m} Tc-08	0,7527	1872,925	1860,305	1850,519	1842,295	1834,665	1828,451	1822,328	1817,478	1813,099		
	^{99m} Tc-09	0,7523	1877,150	1864,487	1854,776	1846,518	1838,969	1832,785	1826,636	1821,717	1817,438		
_	^{99m} Tc-10	0,7519	1887,221	1874,656	1864,811	1856,492	1849,005	1842,728	1836,638	1831,631	1827,442		

Tabela 5.37 Comparação 4: Concentração de Atividade de fontes de solução de ^{99m}Tc, obtida pelo método TDCR, em Hisafe3.

Fonto	TDCR	kB (cm.MeV ⁻¹) / Atividade (kBq/g)									
Fonte	IDCK	0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015	
^{99m} Tc-01	0,7485	2430,789	2398,824	2390,107	2374,853	2365,769	2358,284	2350,701	2345,012	2339,185	
^{99m} Tc-02	0,7471	2435,716	2404,338	2391,367	2380,031	2371,124	2363,825	2356,247	2350,965	2344,842	
^{99m} Tc-03	0,7475	2430,395	2398,898	2385,970	2374,727	2365,784	2358,443	2350,875	2345,484	2339,457	
^{99m} Tc-04	0,7472	2413,315	2382,203	2369,354	2358,130	2349,299	2342,060	2334,551	2329,303	2323,246	
^{99m} Tc-05	0,7461	2451,309	2419,185	2407,133	2395,545	2386,730	2379,537	2371,925	2366,445	2463,348	
^{99m} Tc-06	0,7520	2419,562	2403,219	2392,081	2380,169	2370,577	2362,666	2354,724	2348,301	2342,937	
^{99m} Tc-07	0,7518	2411,011	2394,716	2383,871	2371,804	2362,316	2354,463	2346,541	2340,099	2334,832	
^{99m} Tc-08	0,7517	2405,746	2389,866	2378,773	2366,646	2357,208	2349,386	2341,478	2335,032	2329,810	
^{99m} Tc-09	0,7519	2411,163	2394,874	2383,872	2371,926	2362,393	2354,521	2346,604	2340,187	2334,872	
^{99m} Tc-10	0,7527	2424,719	2408,377	2414,995	2385,082	2375,230	2367,197	2359,062	2352,972	2347,332	

Tabela 5.38 Comparação 5: Concentração de Atividade de fontes de solução de ^{99m}Tc, obtida pelo método TDCR, em Hisafe3.

		kB (cm.MeV ⁻¹) / Atividade (kBa/g)									
Fonte	TDCR)////	inde (itt)	5/			
		0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015	
^{99m} Tc-01	0,7535	2593,429	2575,996	2562,203	2550,822	2539,967	2531,235	2522,902	2516,248	2509,864	
^{99m} Tc-02	0,7540	2587,214	2569,852	2556,013	2544,556	2533,556	2524,760	2516,672	2509,948	2503,374	
^{99m} Tc-03	0,7541	2583,200	2565,867	2552,043	2540,576	2529,600	2520,812	2512,753	2506,033	2499,463	
^{99m} Tc-04	0,7540	2573,027	2555,760	2541,997	2530,604	2519,663	2510,916	2502,872	2496,185	2489,648	
^{99m} Tc-05	0,7546	2562,315	2545,150	2531,359	2519,622	2508,812	2500,025	2492,254	2485,503	2478,895	
^{99m} Tc-06	0,7546	2561,753	2544,589	2530,809	2519,108	2508,281	2499,515	2491,724	2484,983	2478,385	
^{99m} Tc-07	0,7550	2564,427	2547,270	2533,408	2521,379	2510,717	2501,773	2494,167	2487,345	2480,661	
^{99m} Tc-08	0,7545	2565,973	2548,779	2534,982	2523,291	2512,430	2503,665	2495,844	2489,098	2482,496	
^{99m} Tc-09	0,7543	2548,867	2531,774	2518,106	2506,664	2495,780	2487,165	2479,292	2472,631	2466,116	
^{99m} Tc-10	0,7542	2574,805	2557,536	2543,735	2532,201	2521,193	2512,503	2504,534	2497,812	2491,237	

Tabela 5.39. Concentração de Atividade de fonte de solução de ^{99m}Tc, obtida pelo método TDCR, com o uso de filtros, em Hisafe3.

Filters	TDCP	kB (cm.MeV ⁻¹) / Atividade (kBq/g)								
FILLO	IDCK	0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015
S/F	0,7550	67,169	64,215	65,873	64,560	64,478	64,270	64,517	63,868	64,214
F1	0,8106	67,763	66,204	65,207	64,482	63,914	63,457	62,741	62,748	62,495
F2	0,8102	67,844	66,331	65,338	64,624	64,059	63,601	62,889	62,899	62,595
F3	0,8100	67,897	66,422	65,432	64,728	64,166	63,708	62,998	63,012	62,664
F4	0,8018	66,823	65,061	64,881	64,569	64,105	63,722	63,380	63,038	62,850

Figura 5.14 Concentração de Atividade de fonte de solução de ^{99m}Tc, obtida pelo método TDCR, com o uso de filtros, em Hisafe3.

Os resultados obtidos pelo método CIEMAT/NIST são apresentados nas tabelas 5.40, 5.41, 5.42, 5.41, 5.43 e 5.44.

Tabela 5.40 Comparação 1: Concentração de Atividade de fontes de solução de ^{99m}Tc, obtida pelo método CIEMAT/NIST, em Hisafe3.

Nuclideo	Solução	Fonte	Massa	CPM	SQPE	Atividade	
			(g)			(kBq/g)	
		³ H-01	0,051202	32330	786,9		
		³ H-02	0,057558	30672	763,0		
		³ H-03	0,052493	20630	725,8		
	Padrão	³ H-04	0,056998	17737	697,2		
	³ H_P	³ H-05	0,060261	14993	676,3	29,455	
		³ H-06	0,052473	12101	674,0		
		³ H-07	0,057178	11027	650,3		
		³ H-08	0,056658	9672	658,7		
99m_		^{99m} Tc-01	0,025346	226684	786,9	629,367	
Tc		^{99m} Tc-02	0,026767	239456	787,0	629,413	
		^{99m} Tc-03	0,024945	220604	788,1	620,986	
		^{99m} Tc-04	0,032043	286065	787,2	627,898	
	9900	^{99m} Tc-05	0,028849	257606	787,1	628,146	
	frante_X	^{99m} Tc-06	0,029210	260155	787,8	625,731	
		^{99m} Tc-07	0,039660	353395	787,3	626,594	
		^{99m} Tc-08	0,033154	291248	786,5	618,634	
		^{99m} Tc-09	0,030941	271377	787,3	616,762	
		^{99m} Tc-10	0,034225	305219	787,4	627,001	

Nuclideo	Solução	Fonte	Massa	CPM	SQPE	Atividade
			(g)			(kBq/g)
		³ H-01	0,051202	32190	786,9	
		³ H-02	0,057558	30521	763,0	
		³ H-03	0,052493	20528	725,8	
	Padrão	³ H-04	0,056998	17649	697,2	20.210
	³ H_P	³ H-05	0,060261	14919	676,3	29,510
		³ H-06	0,052473	12041	674,0	
		³ H-07	0,057178	10972	650,3	
		³ H-08	0,056658	9624	658,7	
99m 	^{99m} Tc_X	^{99m} Tc-01	0,044785	8996781	786,7	14139,333
le		^{99m} Tc-02	0,058449	11702386	785,7	14117,532
		^{99m} Tc-03	0,049420	9902688	786,8	14101,026
		^{99m} Tc-04	0,049781	9974354	786,2	14115,261
		^{99m} Tc-05	0,049851	9974354	785,9	14042,113
		^{99m} Tc-06	0,048689	9675568	786,1	14002,064
		^{99m} Tc-07	0,051462	10297477	784,6	14137,286
		^{99m} Tc-08	0,050962	10123043	786,0	13998,767
		^{99m} Tc-09	0,052633	10605875	786,3	14193,104
	1	^{99m} Tc-10	0,039760	7866188	786,1	13940,053

Tabela 5.41 Comparação 2: Concentração de Atividade de fontes de solução de ^{99m}Tc, obtida pelo método CIEMAT/NIST, em Hisafe3.

Nuclideo	Solução	Fonte	Massa	CPM	SQPE	Atividade
			(g)			(kBq/g)
	Padrão ³ H_P	³ H-01	0,051202	32110	786,9	29,247
		³ H-02	0,057558	30446	763,0	
		³ H-03	0,052493	20477	725,8	
		³ H-04	0,056998	17605	697,2	
		³ H-05	0,060261	14882	676,3	
		³ H-06	0,052473	12011	674,0	
		³ H-07	0,057178	10944	650,3	
		³ H-08	0,056658	9608	658,7	
99mm	^{99m} Tc_X	^{99m} Tc-01	0,012853	334860	788,4	1828,272
Ic		^{99m} Tc-02	0,012863	334854	788,4	1826,818
		^{99m} Tc-03	0,011332	295193	788,1	1829,013
		^{99m} Tc-04	0,007628	199008	787,9	1832,458
		^{99m} Tc-05	0,012082	314265	787,8	1827,300
		^{99m} Tc-06	0,013774	356684	787,7	1819,511
		^{99m} Tc-07	0,013334	344836	787,7	1817,119
		^{99m} Tc-08	0,014575	377396	787,6	1819,694
		^{99m} Tc-09	0,013534	350103	787,7	1817,610
		^{99m} Tc-10	0,013934	362227	787,7	1826,569

Tabela 5.42 Comparação 3: Concentração de Atividade de fontes de solução de ^{99m}Tc, obtida pelo método CIEMAT/NIST, em Hisafe3.

Nuclideo	Solução	Fonte	Massa	CPM	SQPE	Atividade
			(g)			(kBq/g)
		³ H-01	0,051202	32070	786,9	
		³ H-02	0,057558	30408	763,0	
		³ H-03	0,052493	20452	725,8	
	Padrão	³ H-04	0,056998	17583	697,2	20.211
	³ H_P	³ H-05	0,060261	14864	676,3	29,211
		³ H-06	0,052473	11996	674,0	
		³ H-07	0,057178	10930	650,3	
		³ H-08	0,056658	9596	658,7	
99m-	^{99m} Tc_X	^{99m} Tc-01	0,010801	361585	787,4	2353,503
le		^{99m} Tc-02	0,009840	332083	787,0	2374,266
		^{99m} Tc-03	0,011362	383062	787,0	2371,877
		^{99m} Tc-04	0,011382	380464	787,5	2349,551
		^{99m} Tc-05	0,011442	391527	786,8	2408,264
		^{99m} Tc-06	0,047889	1606386	785,6	2365,909
		^{99m} Tc-07	0,047678	1595350	785,7	2359,626
		^{99m} Tc-08	0,044295	1477552	785,8	2351,876
		^{99m} Tc-09	0,043955	1472115	785,6	2362,204
		^{99m} Tc-10	0,050051	1678126	785,8	2363,950

Tabela 5.43 Comparação 4: Concentração de Atividade de fontes de solução de ^{99m}Tc, obtida pelo método CIEMAT/NIST, em Hisafe3.

Nuclideo	Solução	Fonte	Massa	CPM	SQPE	Atividade
			(g)			(kBq/g)
		³ H-01	0,051202	32070	786,9	
		³ H-02	0,057558	30408	763,0	
		³ H-03	0,052493	20452	725,8	
	Padrão	³ H-04	0,056998	17583	697,2	20.211
	³ H_P	³ H-05	0,060261	14864	676,3	29,211
		³ H-06	0,052473	11996	674,0	
		³ H-07	0,057178	10930	650,3	
		³ H-08	0,056658	9596	658,7	
99m_	^{99m} Tc_X	^{99m} Tc-01	0,011989	425765	787,2	2497,540
Tc		^{99m} Tc-02	0,011704	415508	787,1	2497,175
		^{99m} Tc-03	0,011314	402384	786,9	2502,566
		^{99m} Tc-04	0,010355	366923	786,9	2493,365
		^{99m} Tc-05	0,010816	384665	786,6	2503,877
		^{99m} Tc-06	0,015586	553386	786,9	2498,357
		^{99m} Tc-07	0,031983	1134960	786,3	2499,737
		^{99m} Tc-08	0,020936	743830	786,5	2501,817
		^{99m} Tc-09	0,021775	771804	786,7	2494,981
		^{99m} Tc-10	0,021805	776270	786,3	2507,781

Tabela 5.44 Comparação 5: Concentração de Atividade de fontes de solução de ^{99m}Tc, obtida pelo método CIEMAT/NIST, em Hisafe3.

_

5.5.1 Aplicação do teste estatístico de Grubbs às medições das fontes de ^{99m}Tc

Os valores de Concentração de Atividade das fontes obtidos pelo método TDCR, foram submetidos ao teste estatístico de Grubbs (Outlier), no nível de confiança de 95 %, para a verificação da consistência dos resultados e a tomada de decisão quanto à possível exclusão de dados inconsistentes. Nas medições realizadas pelos métodos TDCR e CIEMAT/NIST, foram promovidas as exclusões das fontes ^{99m}Tc-04 da Comparação 3 e ^{99m}Tc-5 da Comparação 4, respectivamente.

5.5.2 Determinação das Concentrações de Atividade das soluções de ^{99m}Tc

O procedimento de ajuste do valor do parâmetro de extinção kB, foi realizado a partir das medições obtidas com o uso dos filtros cinza de densidade ótica crescente, colocados sobre a superfície externa dos frascos da fonte ^{99m}Tc, em Hisafe3. O gráfico apresentado na figura 5.14 para Hisafe3, obtido a partir da tabela 5.39, mostra que o melhor ajuste linear ou menor variação da Concentração de Atividade foi obtido para o parâmetro de extinção kB igual a 0,010 cm.MeV⁻¹.

No método TDCR, as Concentrações de Atividade das soluções de ^{99m}Tc das 5 comparações foram determinada pela média dos resultados relacionados ao parâmetro de extinção kB igual 0,010 cm.MeV⁻¹, em Hisafe3, obtidos a partir das tabelas 5.34, 5.35, 5.36, 5,37 e 5,38, considerada a exclusão da fonte ^{99m}Tc-04, resultante da aplicação do teste estatístico de Grubbs.

No método CIEMAT/NIST, as Concentrações de Atividade foram obtidas pela média dos resultados determinados para as fontes de ^{99m}Tc em Hisafe3 das tabelas 5.40, 5.41, 5.42, 5.43 e 5.44, considerada a exclusão da fonte ^{99m}Tc-05, resultante da aplicação do teste estatístico de Grubbs.

5.5.3 Avaliação das incertezas das padronizações da soluções de 99mTc

A avaliação de incertezas com o uso do método TDCR de cintilação líquida para as padronizações das soluções de ^{99m}Tc, levou em consideração os componentes de incertezas provenientes dos parâmetros atômicos e nucleares e os resultantes do procedimento experimental. As tabelas 5.45 e 5.46, apresentam a avaliação das incertezas da padronização da solução ^{99m}Tc da comparação 5, obtida pelos métodos TDCR e CIEMAT/NIST, respectivamente, que foi medida pelo BIPM.

Componente de Incerteza	Tipo	%
Massa	В	0,05
Contagens	А	0,36
Atividade das fontes	А	0,53
Atividade (ajuste do parâmetro de extinção kB, com filtros)	А	0,14
Dados atômicos e nucleares	В	< 0,01
Incerteza (k = 1)		0,66

Tabela 5.45 Incertezas da padronização de ^{99m}Tc, obtida pelo método TDCR: Comparação BIPM.

Tabela 5.46 Incertezas da padronização de ^{99m}Tc, obtida pelo método CIEMAT/ NIST: Comparação BIPM.

Tipo	%
В	0,11
В	0,02
А	0,12
А	0,09
В	0,21
В	0,25
В	0,23
А	0,04
А	0,10
Α	0,02
А	0,17
	0,49
	Tipo B A A B B B A A A A A

5.5.4 Resultados das padronizações das soluções de ^{99m}Tc

Os resultados das Comparações realizadas para a determinação do Fator de Calibração da Câmara de Ionização IG11-3 para ^{99m}Tc, obtidos pelos métodos TDCR e CIEMAT/NIST, são apresentados na tabela 5.47. O cálculo do Fator de Calibração foi determinado pela média dos valores das Comparações.

Os resultados da padronização da solução de 99m Tc, que foi medida no Sistema de Transferência, SIRTI/BIPM, são apresentados na tabela 5.48, em termos da Atividade. O gráfico da figura 5.15 mostra que os resultados obtidos pelos métodos de Anticoincidência, TDCR e CIEMAT/NIST são consistentes entre si, dentro de uma incerteza padrão (k = 1).

_	Método	Comparação	Concentração de Atividade	Fator de Calibração
			(MBq/g)	(pA/MBq)
-		1a.	0,633	8,8245
		2a.	14,246	8,8608
TDCF	TDCR	3a.	1,845	8,8306
		4a.	2,376	8,8353
		5a.	2,529	8,8180
		1a.	0,625	8,9375
CIEMAT/I		2a.	14,079	8,9659
	EMAT/NIST	3a.	1,824	8,9814
		4a.	2,361	8,9339
		5a.	2,500	8,9203

Tabela 5.47 Fatores de Calibração da Câmara de Ionização IG11-3 para ^{99m}Tc, obtidos pelos métodos TDCR e CIEMAT/NIST.

Método	Atividade	Incerteza (k = 1)
	(kBq)	(%)
Anticoinc $4\pi \beta$ (CL)– γ (NaI)	65,790	0,72
TDCR	65,849	0,43
CIEMAT/NIST	64,961	0,32

Tabela 5.48 Resultados da padronização da solução de ^{99m}Tc da comparação-chave do BIPM.

Figura 5.15 Resultados da padronização da solução de ^{99m}Tc da comparação-chave do BIPM, pelos métodos de Anticoincidência $4\pi \beta$ (CL)- γ (NaI), TDCR e CIEMAT/NIST, (k = 1).

5.5.5 Resultados da comparação-chave do BIPM

O valor de referência adotado pelo LNMRI e enviado ao BIPM, foi o resultado obtido pelo método de Anticoincidência $4\pi \beta$ (CL)– γ (NaI), da padronização da solução de ^{99m}Tc. O gráfico da figura 5.16 constante do relatório do BIPM (2013) [55], apresenta o resultado do LNMRI, comparativamente aos obtidos pelos demais laboratórios internacionais participantes da comparação internacional, em andamento.

Segundo o relatório do BIPM, o valor de referência do LNMRI, transformado em Atividade Equivalente, por meio das medições do SIRTI realizadas pelo BIPM no LNMRI, resultou em 154,700 MBq, com uma diferença de 1,5 MBq em relação valor de referência de 153,240 MBq ou 0,95 % de desvio da comparação-chave, KCRV/BIPM.

O relatório do BIPM expressa que a padronização realizada pelo LNMRI foi consistente e concorda com o valor de referência KCRV/BIPM dentro de uma incerteza padrão (k = 1), para a comparação-chave de solução de 99m Tc. Com esse resultado, o LNMRI estabeleceu a rastreabilidade à rede internacional de metrologia para a padronização de solução de 99m Tc.

Figura 5.16 – Grau de equivalência do resultado obtido pelo LNMRI com o KCRV/BIPM para ^{99m}Tc.

A implementação do método TDCR de cintilação líquida foi concluída com medições de um amplo espectro de radionuclídeos de diferentes tipos de decaimento, desde emissores de elétrons e pósitrons de baixa, média e alta energia, àqueles que decaem por captura eletrônica e meta-estável com emissão gama e conversão interna de elétrons. Os resultados foram validados por outros métodos absolutos já consolidados no LNMRI, observado o nível de incerteza padrão recomendada pela rede internacional de metrologia.

A padronização das soluções de ⁹⁹Tc e ^{99m}Tc, submetidas às comparações-chave internacionais promovidas pelo Bureau International des Poids et Mesures, estabeleceu a garantia da rastreabilidade das medições realizadas pelo método TDCR para esses radionuclídeos. Esse processo, além de comprovar a excelência dos resultados, traz uma contribuição muito importante para a aplicação desses radionuclídeos na monitoração ambiental e no uso seguro dos radiofármacos.

Com os resultados obtidos da comparação-chave do ⁹⁹Tc, os serviços de monitoração ambiental podem rastreados aos LNMRI. Da mesma forma, os centros produtores de ^{99m}Tc e os serviços de medicina nuclear do Brasil poderão estabelecer rastreabilidade metrológica ao LNMRI em atendimento às exigências da ANVISA quanto ao uso desse radiofármaco na forma de medicamentos.

O resultado obtido pelo método TDCR na padronização de solução ⁶⁸Ge/⁶⁸Ga, constituiu-se em importante contribuição quanto à utilização de ⁶⁸Ga nos procedimentos de radiodiagnóstico PET da medicina nuclear no Brasil. O LNMRI está capacitado para participar das comparações-chave promovidas pelo BIPM e prover a rastreabilidade das medições deste radionuclídeo, por métodos absolutos, aos centros produtores e serviços de medicina nuclear do país.

Outro aspecto importante, foi a participação do LNHB no processo de implementação do método TDCR e na padronização dos radionuclídeos, o que fortalece a cooperação existente entre Brasil e França na área de metrologia de radionuclídeos.

92

REFERÊNCIAS BIBLIOGRÁFICAS

- APPLIED RADIATION AND ISOTOPES, 2013. Ga-68 Special Issue, Volume 76, pp 1-74.
- V. KOLAROV, Y. LE GALLIC ET R. VATIN, 1970. Mesure absolue de l'activité Direct des Emetteurs β purs par Scintillation Liquide, Int. J. Appl. Radiation and Isotopes, Vol.21, pp 443-452.
- K. POCHWALSKI AND T. RADOSZEWSKI, 1979. Disintegration rate determination by liquid scintillation counting using triple to double coincidence ratio (TDCR) method, IBJ Report of Institute of Nuclear Research, Warsaw 1848/0PiDIIE/A,
- R. BRODA AND K. POCHWALSKI, 1982. Calculation of the liquid scintillation detector counting efficiencies in comparison with the experimental data Institute of Nuclear Research, Warsaw, INR 1942 0PiDIIE/A,
- R. BRODA, K. POCHWALSKI AND T. RADOSZEWSKI, 1988. Standardization of Pure Beta Emitters by Liquid-Scintillation Counting, Appl. Radiat. Isot. Vol. 39, No. 2, pp 165-172.
- A. G. MALONDA AND B. M. COURSEY, 1987. Calculation of beta-particle counting efficiency for liquid scintillation system with three phototubes, Appl. Radiat. Isot. 39, 1191–1196.
- P. CASSETTE AND R. VATIN, 1992. Experimental evaluation of TDCR models for the 3 PM liquid-scintillation counter, Nucl. Instrum. Methods A 312 95 – 99,
- R. BRODA AND K. POCHWALSKI, 1992. The enhanced triple to double concidence ratio (ETDCR) method for standardization of radionuclide by liquid scintillation counting. Nucl. Instrum. Methods A 312, 85 – 89.
- A. G. MALONDA, 1995. Modelos de Parâmetro Libre en Centelleo Liquido. Editorial CIEMAT, Madrid.
- R. BRODA, P. CASSETTE, K. MALETKA AND K. POCHWALSKI, 2000. A simple computing program for application of the TDCR method to standardization of pure-beta emitters. Appl. Radiat. Isot. 52 (3), 673–678.
- 11. J. BOUCHARD AND P. CASSETTE, 2000. MAC3: an electronic module for the processing of pulses delivered by a three photomultiplier liquid scintillation counting system. Applied Radiation and Isotopes 52, 669 – 672.
- P. CASSETTE AND J. BOUCHARD, 2003. The design of a liquid scintillation counter based on the triple to double coincidence ratio method, Nuclear Instruments and Methods in Physics Research A 505, 72 – 75.
- B.E. ZIMMERMAN*, R. COLLE AND J.T. CESSNA, 2004. Construction and implementation of the NIST triple-to-double coincidence ratio (TDCR) spectrometer, Applied Radiation and Isotopes 60 (2004) 433–438.
- K. B. LEE, JONG MAN LEE, TAE SOON PARK AND HAN YULL HWANG, 2004. Implementation of TDCR method in KRISS. Nuclear Instruments and Methods in Physics Research, A, 534, 496-502.
- P. ARENILLAS AND P. CASSETTE, 2006. Implementation of the TDCR liquid scintillation method at CNEA-LMR, Argentina, Applied Radiation and Isotopes 64 (2006) 1500–1504.
- M. J. QIN, L. MO, D. ALEXIEV AND P. CASSETTE, 2008. Construction and implementation of a TDCR system at ANSTO Applied Radiation and Isotopes 66 1033–1037.
- 17. O. NAHLE, K.KOSSERT AND P.CASSETTE, Activity standardization of ³H with the new TDCR system at PTB, Applied Radiation and Isotopes 68, 1534–1536.
- L. C. JOHANSSON AND J. P. SEPHTON, 2010. Validation of a new TDCR system at NPL, Applied Radiation and Isotopes 68, 1537-1539.
- Z. YAOZI, 1992. Standardization of Tritium by liquid scintillation counting, Nuclear Instruments and Methods in Physics Research A312 81-84.
- 20. C. IVAN, A. MARIA C. WATJEN, P. CASSETTE, M. SAHAGIA, A. ANTOHE AND E. L. GRIGORESCU, 2010. Participation in the CCRI(II)-K2.3H comparison and study of the new TDCR-LS counter with 6 CPMs Applied Radiation and Isotopes 68 1543–1545.
- 21. W. YONGLE, L. JUNCHENG, L. JIACHENG, X. WENJUN, Y. SHUNHE, G. XIAOQING, C. XILIN, Y. YUANDI AND Y. DAQING, 2012. Standardization of Tritium Water by TDCR Method, Plasma Science and Technology, Vol.14, No.7.
- 22. J. S. LOUREIRO, 2000. Calibração de radionuclídeos que decaem por emissão beta ou por captura eletrônica pela técnica de cintilação líquida, Tese de Mestrado, Instituto Militar de Engenharia.
- 23. A. SZORÉNYI, A. ZSINKA AND J. VÁGVOLGYI, 1996. Standardization of purebeta emitting and electron-capture radionuclídes by liquid scintillation counting, Nuclear Instruments and Methods in Physics Research A 369 359-362.

- 24. D. SMITH, J. L. MAKEPEACE AND D. H. WOODS, 1987. Determination of the Radioactivity Concentration of a ¹⁴C Standard by Three Methods, Appl. Radial. Isot. Vol. 38, No. 5. pp. 339-344.
- B. M. COURSEY, J. A. B GIBSON, M. W. HEITZMANN AND J. C. LEAK, 1984. Standardization of Technetium-99 by Liquid-Scintillation Counting, Int. J. Appl. Radiat. Isot. Vol. 35, pp. 1103-1112.
- 26. L. L. PEREZ, R. COLLÉ, R. FITZGERALD, B. E ZIMMERMAN AND L. CUMBERLAND, 2010. Investigation into the Standardization of ⁹⁹Tc. Applied Radiation and Isotopes 68, 1489-1494.
- 27. B. E ZIMMERMAN, T. ALTZITZOGLOU, D. RODRIGUES, R. BRODA, P. CASSETTE, L. MO, G. RATEL, B. SIMPSON, W. VAN WYNGAARDT AND C. WATJEN, 2010. Comparison of triple-to-double coincidence ratio (TDCR) efficiency calculations and uncertainty assessments for ⁹⁹Tc. Applied Radiaton and Isotopes 68, 1477-1481.
- E. SCHONFELD, U. SCHOTZIG, E. GUNTHER AND H. SCHRADER, 1994. Standardization and Decay Data of ⁶⁸Ge/⁶⁸Ga, Appl. Radiat. Isot. Vol. 45, No. 9, pp. 955-961.
- [30] E. L. GRIGORESCU, C. D. NEGUT, A. LUCA, A. C. RAZDOLESCU AND M. TANASE, 2004. "Standardization of ⁶⁸(Ge+Ga)", Applied Radiation and Isotopes, v. 60, pp. 429-431.
- 30. [31] B. E. ZIMMERMAN, J. T. CESSNA AND R FITZGERALD, 2008. "Standardization of ⁶⁸Ge/⁶⁸Ga Using Three Liquid Scintillation Counting Based Methods", Journal of Research of the National Institute of Standards and Technology, v. 113, pp.265-280.
- 31. [32] B. E. ZIMMERMAN AND J. T. CESSNA, 2010. "Development of a Traceable Calibration Methodology for Solid ⁶⁸Ge/⁶⁸Ga Sources Used as a Calibration Surrogate for ¹⁸F in Radionuclide Activity Calibrators", The Journal of Nuclear Medicine, v. 51, nº 3, pp. 448-453.
- 32. A. G. MALONDA AND B. M. COURSEY, 1987. Standardization of Isomeric-Transition Radionuclídeos by Liquid-Scintillation Efficiency Tracing with Hydrogen-3: Application to Technetium-99m. Appl. Radiat. Isot. Vol. 38, No. 9, pp. 695-700.

- 33. J. M. LEE, K. B. LEE, S. H. LEE AND T. S. PARK, 2012. Calibration of KRISS reference ionization chamber for key comparison of ^{99m}Tc measurement, Applied Radiation and Isotopes 70, 1853–1855
- 34. G. F. KNOLL, 1989. Radiation Detection and Measurement, Second Edition, John Wiley & Sons.
- 35. J. B. BIRKS, 1965. Symmetry Selection rule for π -eletronic transition I cata condensed hydrocarbons, Physics Letters, Vol. 19, No. 1.
- J. B. BIRKS, 1965. Π*-Duality in Aromatic Molecules, Physics Letters, Vol. 19, No. 3.
- 37. J. B. BIRKS, 1970. The luminescence of liquid alkyl benzene under high-intensity ionizing irradiation, Chemical Physics Letters, Vol. 4, No. 10.
- J. B. BIRKS, 1970. Triplet-Triplet interactions in organic scintillators, Chemical Physics Letters, Vol. 7, No. 2.
- J. B. BIRKS, 1951. Scintillations from Organics Cristals: Especific Fluorescence and Relative Response of Different Radiations, Proc. Phys. Soc. London Sect. A64, 874.
- 40. A. G. MALONDA AND E. G. TORAÑO E, 1981. Cálculo de la eficiência de detección en líquidos centelleadores. I. Nucleidos que se desintegran por emisión simple de negatrones. Informe JEN, 518, Madrid.
- 41. M. J. BERGER AND S. M. SELTZER, 1964. Tables of Energy Losses and Ranges of Electrons and Positrons, NAS-NRC, D.L.E., 113, p. 205.
- 42. J. M. LOS ARCOS, A. GRAU AND A. FERNANDEZ, 1987. VIASKL: A computer program to evaluate the liquid scintillation counting efficiency and its associated uncertainty for K-L-atomic shell electron-capture nuclides. Computer Physics Communications 44, 209-220.
- 43. M. F. L'ANNUNZIATA, 2003. Handbook Radioactivity Analysis, Second Edition, Academic Press.
- 44. A. G. MALONDA AND E. G. TORAÑO, 1989. Cálculo de la eficiência de recuento en nucleidos que experimentan desintegración beta y desexcitación gamma simple. Report CIEMAT, 616, Madrid.
- 45. R. BRODA, P. CASSETTE AND K. KOSSERT, 2007. Radionuclide metrology using liquid scintillation counting, Metrologie 44 836-852.

- 46. E. G. TORAÑO AND A. G. MALONDA, 1985. EFFY, a new program to compute the counting efficiency of beta particles in liquid scintillators, Computer Physics Communications 36 307-312.
- 47. P. CASSETTE, 1982. SPEBETA, programme de calcul du spectre en énergie des electrons émis par des radionucléides émetteurs bèta, Note Technique LPRI/92/307/Juillet.
- 48. P. CASSETTE, 2007. Program TDCR07c: Program TDCR and tracer methods in LSC, LNHB-CEA/LIST, France.
- 49. ICRU REPORT 37, 1984. Stopping Powers for Electrons and Positrons.
- 50. OECD/NEA, 2008. PENELOPE-2008: A Code System for Monte Carlo Simulation of Electron and Photon Transport, Nuclear Agency Energy/Organization for Economic Co-operation and Development.
- 51. M. M. BÉ, 2011. Table de Radionucléides, CEA/LIST, LNE/LNHB.
- 52. E. GUNTER, 2003. Program CN2003: A program to calculate the LC efficiency of a nuclide vs. efficiency the tracer H-3 (CIEMAT/NIST), PTB/Germany.
- 53. JCGM, 2008, Evaluation of measurement data: Guide to the Expression of Uncertainty in Measurement, JCGM (BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML).
- 54. F. E. GRUBBS, 1969. Procedures for Detecting Outlying Observations in Samples, *Technometrics*, 11(1), pp. 1-21.
- 55. BIPM, 2013. Draft Report: Activity measurements of the radionuclide ^{99m}Tc for the CNEA, Argentina and the LNMRI/IRD, Brazil in the ongoing comparison BIPM.RI(II)-K4.Tc-99m.

ANEXO

Artigo "Primary activity standardization of ⁹⁹Tc by three different absolute methods" em publicação na revista Applied Radiation and Isotopes.

ARTICLE IN PRESS

Contents lists available at ScienceDirect

Applied Radiation and Isotopes

Primary activity standardization of ⁹⁹Tc by three different absolute methods

Paulo A.L. da Cruz^a, Carlos J. da Silva^a, Denise S. Moreira^a, Akira Iwahara^{a,*}, Luiz Tauhata^b, Ricardo T. Lopes^c

^a Laboratório Nacional de Metrologia das Radiações Ionizantes/Instituto de Radioproteção e Dosimetria/Comissão Nacional de Energia Nuclear

(LNMRI/IRD/CNEN), Av. Salvador Allende, s/no – Barra da Tijuca, CEP 22783-127, Rio de Janeiro, Brazil

^b Fundação Carlos Chagas Filho de Apoio à Pesquisa do Estado de Rio de Janeiro (FAPERJ), Av. Erasmo Braga, 118-6° andar – Centro, CEP 20020-000, Rio de

Janeiro, Brazil

^c Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro (PEN/COPPE, UFRJ), Ilha do Fundão, Caixa Postal 68590, CEP 21945-970, Rio de Janeiro, Brazil

HIGHLIGHTS

- A TDCR liquid scintillation counting system has been implemented at LNMRI.
- Standardization of a solution of ⁹⁹Tc in the framework of a CCRI(II) key-comparison.
- Consistency of activity obtained checked by coincidence and anticoincidence methods.
- Assessed uncertainty fairly smaller than that of the other two methods.

ARTICLE INFO

Keywords: TDCR Live-timed anticoincidence Classical coincidence ⁹⁹Tc ABSTRACT

The activity concentration of a solution of ⁹⁹Tc was absolutely determined by liquid scintillation measurements based on the triple-to double-coincidence ratio method (TDCR) and compared with the results given by $4\pi\beta$ (LS)- γ (NaI) live-timed anticoincidence (with extending dead-time) and classical $4\pi\beta$ (PC)- γ (NaI) coincidence counting systems based on using ⁶⁰Co as the efficiency-tracing radionuclide. The results of anticoincidence and coincidence counting are, respectively, 0.18% and 0.66% higher than the result from TDCR measurements, but they are consistent within uncertainties.

© 2013 Elsevier Ltd. All rights reserved.

Applied Radiation and

1. Introduction

This paper describes briefly the procedure used in LNMRI for primary activity standardization of ⁹⁹Tc by the TDCR method and compared with anticoincidence and coincidence methods. ⁹⁹Tc occurs naturally only in very small amounts, but is one of the most significant components of nuclear waste making it a major concern when considering long-term disposal of high-level radioactive waste. It decays with a half-life of 211.5×10^3 years to ⁹⁹Ru ground state emitting soft beta rays of 293.8 keV maximum energy and gamma rays with a small emission probability of 89.52 keV (Bé et al., 2011). A solution of ⁹⁹Tc was provided by NPL/UK in the frame of an international key-comparison organized by CCRI (II)/BIPM and piloted by NPL, in 2012.

The standardization of the ⁹⁹Tc solution was performed by liquid scintillation measurements based on the triple-to-double coincidence

ratio (TDCR) method (Broda et al., 2007). The activity result was compared with those given by $4\pi\beta(LS)-\gamma(Nal)$ live-timed anticoincidence (with extended dead-time) and classical $4\pi\beta(PC)-\gamma(Nal)$ coincidence techniques using ⁶⁰Co as the efficiency-tracing radionuclide (Steyn, 1973; Lowenthal, 1973). Liquid scintillation samples containing a mixture of ⁶⁰Co and ⁹⁹Tc were prepared and counted in the $4\pi\beta(LS)-\gamma(Nal)$ live-timed anticoincidence system. The classical $4\pi\beta(PC)-\gamma(Nal)$ coincidence method (Campion, 1959) was carried out using solid sources prepared by depositing aliquots of the mixed solution of ⁶⁰Co and ⁹⁹Tc on gold coated VYNS films.

2. Methodology

2.1. TDCR method

The basis of the TDCR method is widely described in the literature (Broda et al., 1988; Grau Malonda and Coursey, 1988; Broda and Pochwalski, 1992; Cassette et al., 2000). The detection system assembled at LNMRI is composed of two 9899 A Thorn EMI

Please cite this article as: da Cruz, P.A.L., et al., Primary activity standardization of ⁹⁹Tc by three different absolute methods. Appl. Radiat. Isotopes (2013), http://dx.doi.org/10.1016/j.apradiso.2013.11.138

^{*} Corresponding author. Tel.: +55 21 2173 2879; fax: +55 21 21732875. *E-mail address:* iwahara@ird.gov.br (A. Iwahara).

^{0969-8043/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.apradiso.2013.11.138

2

Electronics (serial 118 and 126) and one 9829 A ET Enterprises photomultiplier tubes (PMTs) arranged symmetrically at an angle of 120° each other. Coincidences between PMTs are processed by the MAC3 unit (Bouchard and Cassette, 2000) which is based on the live time technique and extendable dead times. Especially designed for liquid scintillation counting, the MAC3 module was developed to avoid excess of counting due to spurious pulses in the counter, i.e. delayed pulses generated by the scintillator or the presence of residual gas in the phototubes. For the activity determination the TDCR data were analyzed by the TDCR07c code (Cassette, 2010). This computational code used to calculate the efficiency of each photomultiplier tube takes into account possible counting asymmetries between PMTs. The beta spectra calculation program used was SPEBETA code (Cassette, 1992). The shape factor for $9/2^+ \rightarrow 5/2^+$ ⁹⁹Tc β -transition (a second forbidden non-unique transition) was $C(W) = 0.54p^2 + q^2$ as found in Behrens and Szybisz (1976). The value of 0.54 refers to shape parameter λ_2 . Ten samples with masses ranging from 40 mg to 90 mg of 99Tc solution and one blank sample were prepared in 10 mL Hisafe3 scintillation cocktail contained in commercial Perkin Elmer glass vials. Five measurements of five minutes were carried out for each source. In addition, one of these sources was measured using six gray filters for detection efficiency variation in order to optimize the kB value. The best *kB* factor is determined when a zero-slope is obtained for the function relating activity and TDCR value.

2.2. $4\pi\beta(LS)-\gamma(NaI)$ live-timed anticoincidence with extended dead time

The $4\pi\beta$ (LS)- γ (NaI) live-timed anticoincidence with extended dead times (Baerg et al., 1976) installed in the LNMRI (da Silva et al., 2008) is based on specialized modules (MTR2, MI1, MI2 and MI3) developed to implement $4\pi\beta$ - γ coincidence counting

Fig. 1. Activity concentration of source 01 as a function of different quenching conditions using grey filters.

Table	1
Tubic	

Measurement results of nine ⁹⁹Tc samples with the TDCR method.

without the use of a resolving time (Bouchard, 2000; 2002; Bobin et al., 2007). Two MTR2 modules are installed in both β -and γ -channels to process counting, extendable dead time and the livetime technique. The MI1 and MI2 modules implement the delayed γ -counting in order to record non-correlated γ -events. For that purpose, the extendable dead time generated in the β -channel is used as a gate to prevent the counting of correlated γ -events. The coincidence rate is obtained indirectly by subtracting the noncorrelated γ -rate from the total γ -rate. The function of MI3 module is to operate as γ -energy discriminator and, in case of LNMRI system, a clock of 1×10^6 Hz was put inside to implement the livetime technique. The radionuclide 60 Co. with activity concentration of (113.12 + 0.25) kBg/g at the reference date 03/01/2012 12h00 UTC, was used as efficiency tracer and six sources (three sources of Hisafe3 and three sources of Ultima Gold) containing mixed ⁹⁹Tc and 60Co were prepared for counting. Each source had 15 mL cocktail volume and the masses ranged from 56 to 85 mg.

2.3. Classical $4\pi\beta(PC)-\gamma(NaI)$ coincidence method

The coincidence system consists of a gas flow 4π proportional counter (PC) coupled to a 10.2 cm × 10.2 cm crystal of Nal(Tl) and the counting gas is a mixture of 90% argon and 10% methane operating at 0.1 MPa pressure. Beta particles originating from ⁹⁹Tc and ⁶⁰Co radionuclide tracer are counted in the PC channel and the gamma rays of 1173.2 keV and 1332.5 keV of ⁶⁰Co are counted in the gamma channel. Mixed sources were prepared by dropping known masses of ⁹⁹Tc and ⁶⁰Co onto VYNS film previously gold coated on both sides. The solution masses of the mixed sources ranged from 20 mg to 35 mg.

3. Results and discussion

The activity concentration of source number 01 versus the TDCR values under different quenching conditions using grey filters in order to optimize the *kB* value is plotted in Fig. 1. From this figure the best *kB* value, where the activity of the source was constant over the TDCR range analyzed (0.8795 to 0.9344), is around 0.008 cm/MeV. The measured activities of nine sources (numbered 02 to 10) as a function of *TDCR* for different *kB* values are presented in Table 1. The TDCR value is in the 0.9320 to 0.9344 range. The lowest dispersion (0.05%) in the activities of the sources was observed and confirmed at kB=0.008 cm/MeV (Hisafe3 scintillation cocktail) and this value was chosen for the determination of the activity of ⁹⁹Tc. For the maximum *TDCR* value, 0.9344, the detection efficiency obtained was 0.9415. The final activity concentration was evaluated as the average of the nine sources at kB = 0.008 cm/MeV and the relative combined standard uncertainty on the activity concentration was 0.32%. The contribution of the effect of the shape factor $C(W) = 0.54p^2 + q^2$ on the efficiency

Source	TDCR	<i>kB</i> (cm/MeV)/Activity concentration (kBq/g)								
		0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.015
02	0.9344	112.589	112.721	112.805	112.913	112.985	113.081	113.154	113.226	113.311
03	0.9339	112.590	112.697	112.781	112.901	112.973	113.081	113.130	113.226	113.274
04	0.9321	112.611	112.719	112.827	112.923	113.007	113.104	113.164	113.249	113.334
05	0.9333	112.679	112.799	112.895	112.979	113.075	113.160	113.256	113.317	113.377
06	0.9330	112.737	112.869	112.953	113.049	113.121	113.218	113.290	113.387	113.447
07	0.9324	112.644	112.728	112.836	112.932	113.029	113.113	113.185	113.258	113.319
08	0.9326	112.632	112.752	112.860	112.944	113.016	113.113	113.185	113.258	113.330
09	0.9320	112.729	112.813	112.933	113.017	113.125	113.174	113.270	113.343	113.416
10	0.9328	112.747	112.843	112.951	113.047	113.119	113.216	113.288	113.373	113.433

Please cite this article as: da Cruz, P.A.L., et al., Primary activity standardization of ⁹⁹Tc by three different absolute methods. Appl. Radiat. Isotopes (2013), http://dx.doi.org/10.1016/j.apradiso.2013.11.138

calculation was done by changing the value of the shape parameter λ_2 from 0.54 to 1 and calculating the corresponding activities. The difference between these activities calculated was 0.21% and this value was adopted as the uncertainty due to the shape factor.

In the $4\pi\beta\gamma$ anticoincidence method the experimental data of each liquid scintillation mixed source was linearly fit in an efficiency range of approximately 0.79 to 0.90 and the ⁶⁰Co activity was subtracted from the extrapolated value of the mixed source. A typical extrapolation curve for one source is shown in Fig. 2. No visible trend in the residuals was observed. The average of six sources was adopted as the activity concentration value with

Fig. 2. Linear fit of the $4\pi\beta$ - γ anticoincidence data of one typical mixed source of ⁹⁹Tc and ⁶⁰Co. The value of the ⁶⁰Co activity which is already subtracted from the intercept provides the activity of ⁹⁹Tc.

Fig. 3. Quadratic fit of the $4\pi\beta\beta$ - γ coincidence data of the set of five mixed sources of ⁹⁹Tc and ⁶⁰Co. The value of the ⁶⁰Co activity which is already subtracted from the intercept provides the activity of ⁹⁹Tc.

relative combined standard uncertainty of 0.53%. The linear fitting procedure for obtaining the extrapolation of efficiency curve provides the dominant uncertainty in the result.

In the classical coincidence method all the $4\pi\beta\gamma$ coincidence data from five mixed solid sources were set in the same graph and a quadratic fit was used over an efficiency range from 0.66 to 0.86 to obtain the intercept of the efficiency curve and then, the activity of the ⁹⁹Tc after subtracting the activity of ⁶⁰Co. The difference between the linear and the quadratic fit was 0.66% but the chi-square test and the correlation coefficient were slightly better for the quadratic fit. Again no visible trend in the residuals was observed from either fit and the fitting procedure provides the dominant uncertainty in the result. Fig. 3 shows the extrapolation curve obtained from the set of five beta-gamma experimental data counting and the relative combined standard uncertainty was 0.62%.

The uncertainty budgets for the three counting methods are shown in Table 2. In Fig. 4 the results of the three methods are displayed. They are consistent within a combined uncertainty of k=1. The values of the activity are multiplied by an arbitrary factor.

4. Summary

The TDCR system based on liquid scintillation implemented at LNMRI was first used to measure the activity concentration of a solution of ⁹⁹Tc within a BIPM CCRI(II) key comparison piloted by NPL/UK, in 2012. The *TDCR* value was in agreement with the coincidence and anticoincidence methods within -0.18% and -0.66%, respectively. The application of this method in the standardization of radionuclides that decay by electron-capture, especially those used in

Fig. 4. Plot of the activity concentration obtained by the three measurement methods. The uncertainty bars correspond to coverage factor k=1.

Table 2

Standard uncertainty components, in percent, evaluated for activity determination of ⁹⁹Tc by three methods.

Component	Method		
	TDCR	Anticoincidence	Coincidence
Counting statistics Fitting of extrapolation curve Weighing	0.21	Included in fitting 0.38 0.05	Included in fitting 0.53 0.05
Background Live time technique	Negligible 0.01	0.29	0.20
Decay (half-life) Dead time	< 0.001	< 0.001	< 0.001 0.04
Resolving time Gandy effect			0.04 0.08
kB value	0.05	0.22	0.22
Shape factor Efficiency variation grey filters Relative combined standard uncertainty	0.21 0.08 0.32	0.53	0.62
Relative combined standard uncertainty	0.52	0.55	0.02

Please cite this article as: da Cruz, P.A.L., et al., Primary activity standardization of ⁹⁹Tc by three different absolute methods. Appl. Radiat. Isotopes (2013), http://dx.doi.org/10.1016/j.apradiso.2013.11.138

4

ARTICLE IN PRESS

P.A.L. da Cruz et al. / Applied Radiation and Isotopes **(()**

nuclear medicine, is being planned. In this work the evaluated uncertainty for TDCR method was fairly lower in comparison with the anticoincidence and coincidence methods.

References

- Baerg, A.P., Muzenmayer, K., Bowes, G.C., 1976. Live-timed anti-coincidence counting with extending dead-time circuitry. Metrologia 12, 77–80.
- Bé M.-M., Chisté V., Dulieu C., Mougeot X., Chechev V.P., Kuzmenko N.K., Kondev F.G., Luca A., Galán M., Nichols A.L., Arinc A., Pearce A., Huang X., Wang B., 2011. Table of Radionuclides, 6, Monographie BIPM-5. ISBN-13 978-92-822-2272-3. Bureau International des Poids et Mesures, Sèvres.
- Behrens, H., Szybisz, L., 1976. Shapes of beta spectra. ZAED Phys. Data, 1-6.
- Bobin, C., Bouchard, J., Hamon, C., Iroulart, M.G., Plagnard, J., 2007. Standardization of 67 Ga using a 4π (LS) β – γ anti-coincidence system. Appl. Radiat. Isot 65, 757–763.
- Broda, R., Pochwalski, K., Radoszewski, T., 1988. Calculation of liquid-scintillation detector efficiency. Appl. Radiat. Isot 39, 159–164.
- Broda, R., Pochwalski, K., 1992. The enhanced triple-to-double coincidence ratio (TDCR) method for standardization of radionuclides by liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. A 312, 85–89.
- Broda, R., Cassette, P., Kossert, K., 2007. Radionuclide metrology using liquid scintillation counting. Metrologia 44, S36–S52.
- Bouchard, J., 2000. MTR2: a discrimination and dead-time module used in counting systems. Appl. Radiat. Isot 52, 441–446.

- Bouchard, J., Cassette, P., 2000. MAC3: an electronic module for the processing of pulses delivered by a three photomultiplier liquid-scintillation counting system. Appl. Radiat. Isot 52, 669–672.
- Bouchard, J., 2002. A new set of electronic modules NIM standard for a coincidence system using the pulse mixing method. Appl. Radiat. Isot 56, 269–273.
 Campion, P.J, 1959. The standardization of radioisotopes by the beta-gamma
- Campion, P.J. 1959. The standardization of radioisotopes by the beta-gamma coincidence method using high efficiency detectors. Int. J. Appl. Radiat. Isot. 4, 1519–1522.
- Cassette, P., 1992. SPEBETA, programme de calcul du spectre en énergies des électrons émis par des radionucléides émetteurs beta. Note technique, CEA/ DAMRI/LPRI.
- Cassette, P, Broda, R, Hainos, D., Terlikowska, T., 2000. Analysis of detectionefficiency variation techniques for the implementation of the TDCR method in liquid scintillation counting. Appl. Radiat. Isot 52, 643–648.
- da Silva, C.J., Iwahara, A., Poledna, R., Bernardes, E.M.O., de Prinzio, M.A.R., Delgado, J.U., Lopes, R.T., 2008. Standardization of Am-241, Sb-124 and I-131 by livetimed anticoincidence counting with extending dead time. Appl. Radiat. Isot 66, 886–889.
- Grau Malonda, A., Coursey, B.M., 1988. Calculation of beta-particle counting efficiency for liquid scintillation systems with three photo-tubes. Appl. Radiat. Isot 39, 1191–1196.
- Lowenthal, G.C., 1973. On sources of systematic errors in efficiency tracer measurements. Nucl. Instrum. Methods 112, 165–168.
- Steyn, J., 1973. Tracer method for pure beta emitter measurement. Nucl. Instrum. Methods 112, 157–163.