ESTUDO DAS INTERAÇÕES ROCHA-FLUIDO EM ARENITOS INCONSOLIDADOS COM SIMULADORES FÍSICOS UTILIZANDO TOMOGRAFIA COMPUTADORIZADA E MICROFLUORESCÊNCIA DE RAIOS X POR LUZ SÍNCROTRON

João Luiz Batista Ribeiro

TESE SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIAS EM ENGENHARIA NUCLEAR.

Aprovada por:

Prof. Ricardo Tadeu Lopes, D.Sc.

Dr. Andre Leibsohn Martins, D.Sc.

Prof. Delson Braz, D.Sc.

Prof. Hugo Reuters Schelin, D.Sc.

Dr. Luis Carlos Baralho Bianco, Ph.D.

Prof. Marcelino José dos Anjos, D.Sc.

RIO DE JANEIRO, RJ – BRASIL ABRIL DE 2006

RIBEIRO, JOÃO LUIZ BATISTA

Estudo das interações rocha-fluido em arenitos inconsolidados com simuladores físicos utilizando Tomografia Computadorizada e microfluorescência de raios X por luz síncrotron [Rio de Janeiro] 2006

XVIII, 196 pg. 29,7 cm (COPPE\UFRJ,

D.Sc., Engenharia Nuclear, 2006)

Tese - Universidade Federal do Rio de Janeiro, COPPE

- 1. Tomografia Computadorizada
- 2. Microfluorescência de Raios X
- 3. Interação Rocha-Fluido

I. COPPE\UFRJ II. Título (Série)

DEDICAÇÃO

À minha esposa Katia por todo amor e paciência comigo, durante estes quatro anos de tese. Exatamente o tempo que a conheço... (Todo o meu amor)!!!

Aos meus pais Christiano e Celina por terem me proporcionado tudo na vida... (Todo meu respeito)!!!

Aos meus irmãos Toni, Guto e Camila por terem me aturado durante a infância e adolescência...(Todas as minhas brincadeiras)!!!

AGRADECIMENTOS

A Deus por ter me dado a vida e toda força que preciso, todos os dias para vencer....

A meu orientador Ricardo T. Lopes por mais esses quatro anos de orientação...

A meu amigo e mentor João Queiroz por ter acreditado em mim e ter me dado mais essa oportunidade...

Aos meus amigos Dado, Mário (Negão), Délio (Bodão) , Ricardo (Magrelo) e Clebão (Venta) – Valeu meus camaradas !!!

A Lenita Rangel (Madrinha), Jaques (Jaquão), Marcão, Cadú e outros do Cenpes que não me recordo agora, mas se sintam agradecidos...

Aos meus novos mas "mui" estimados amigos Edimir Brandão, Eduardo (Duda), Guilherme (Gui) a galera da sala de cima. Valeu pelas cachaças, cocas diets e por ter me feito ir a um jogo do Flamengo, e ainda ficar naquela torcida horrível – Isto é que é amizade...

Aos técnicos do LIN Biquinho, Osmar e Sandro e todos os outros valeu pelas caronas e dicas...

Meu camarada Marcelino pelas conversas, idas ao Sícrotron e tudo mais...

A todos que não me recordo no momento, mas que de alguma forma me ajudou na elaboração desta tese. Meu muito obrigado (considerem-se agradecidos)...

Amigo e coisa para se guardar do lado esquerdo do peito... (Miltom Nascimento)

Comece fazendo o que é necessário, depois o que é possível, e de repente você estará fazendo o impossível." Por isso todos os dias Deus nos dá um momento em que é possível mudar tudo em nossa vida. O instante mágico é o momento em que fazer a escolha certa ou errada pode mudar toda a nossa existência, por isso não tenha medo e faça a sua escolha. Sua vida certamente, dependerá disso.

São Francisco de Assis e Eu mesmo

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Doutor em Ciências (D.Sc.)

ESTUDO DAS INTERAÇÕES ROCHA-FLUIDO EM ARENITOS INCONSOLIDADOS COM SIMULADORES FÍSICOS UTILIZANDO TOMOGRAFIA COMPUTADORIZADA E MICROFLUORESCÊNCIA DE RAIOS X POR LUZ SÍNCROTRON

João Luiz Batista Ribeiro

Abril / 2006

Orientador: Ricardo Tadeu Lopes

Programa: Engenharia Nuclear

Este trabalho desenvolve uma célula de interação para aneritos inconsolidados (simulador físico) para estudo dos diversos fenômenos de interação rocha-fluido que ocorrem durante a injeção de fluidos em meios porosos, tais como: análise de formação de reboco, invasão de sólidos e na análise de desempenho em agentes divergentes em corpos-de-prova de arenitos inconsolidados (areia) simulando reservatórios gigantes de petróleo encontrados na Bacia de Campos.

Esta célula, quando acoplada a um tomógrafo computadorizado (TC), permite a reconstrução 2D e/ou 3D das características e estruturas internas de rochas. Por este motivo, a tomografia computadorizada de Raios X é considerada uma das técnicas de análise mais eficientes para aplicações em ensaios não destrutivos, com uso cada vez mais difundido na indústria do petróleo com as mais diversas finalidades.

Como complemento ao estudo por TC utilizou-se a técnica de microfluorescência de raios X com radiação síncrotron (µSRXRF), que foi utilizada no mapeamento, identificação dos elementos presentes no perfil de invasão (área invadida), na determinação das concentração de polímeros marcados e agentes obturantes que invadiram meios porosos constituídos de arenitos inconsolidados após os ensaios de dano.

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Doctor of Science (D.Sc.)

STUDY OF ROCK-FLUID INTERACTIONS IN UNCONSOLIDATED SANDSTONES WITH PHYSICAL SIMULATORS USING COMPUTED TOMOGRAPHY AND SYNCHROTRON LIGHT X-RAY MICRO FLUORESCENCE

João Luiz Batista Ribeiro

April / 2006

Advisors: Prof. Ricardo Tadeu Lopes

Department: Nuclear Engineering

This work to develop a unconsolidated sandstones interaction cell (physical simulator) for study of diverse phenomena in interaction rock-fluid that happen during injection of fluid in porous media, as well as: study of filtercake formation, solids invasion and analysis of performance with diverting agents in rock core samples constituted for unconsolidated sandstones (sand), that simulate giants petroleum reservoir founded in Campos Basin.

It simulator when coupled in a Computerized Tomography (CT) allows 2D and/or 3D reconstruction of internal characteristics and structures of rocks. For this reason, the X-ray CT is modernly considered one of the most efficient techniques in non-destructive testing, with an even more use in petroleum industry in more different applications.

Together with CT study, X-ray micro fluorescence analysis using synchrotron radiation (μ SRXRF) was used to map and to identify the invasion profile (invaded area and bulk invasion), in determination of concentration of marked polymers and bridging agents that are present in the unconsolidated rock core plugues constituted of unconsolidated sandstones after the damage tests.

SUMÁRIO

CAPÍTULO 1 – INTRODUÇÃO

11111 Vuuçav

CAPÍTULO 2 – REVISÃO BIBLIOGRÁFICA

Revisão Bibliográfica	07
2.1 – Tomografia Computadorizada	07
2.2 – Fluorescência de raios X	12
2.3 – Indústria do petróleo	17

CAPÍTULO 3 – FUNDAMENTOS TEÓRICOS

3.5.1 – Primeira geração de tomógrafos	50
3.5.2 – Segunda geração de tomógrafos	51
3.5.3 – Terceira geração de tomógrafos	51
3.5.4 – Quarta geração de tomógrafos	52
3.5.5 – Quinta geração de tomógrafos	54
3.5.6 – Sexta geração de tomógrafos	55
3.6 – Exibição de imagens	56
3.7 – (µSRXRF) Microfluorescência de raios X por Luz Síncrotron	57
3.7.1 - Fundamentos	57
3.7.1.1 – Excitação dos elementos	58
3.7.1.2 – Dispersão dos raios X característicos	60
3.7.2 – Linha de Microfluorescência de raios X do LNLS (Labora	tório
Nacional de Luz Síncrotron)	63

CAPÍTULO 4 – EQUIPAMENTOS E MATERIAIS

4.6.2 – Análises tomográficas82
4.6.2.1 – Ensaios preliminares83
4.6.2.2 – Ensaios tomográficos antes da formação do reboco85
4.6.2.3 – Ensaios preliminares após a formação do reboco88
4.6.3 – Imagens 3D (tridimensionais) do reboco formado92
4.6.4 – Ensaios tomográficos de divergência94
4.6.4.1 – Parte experimental95
4.6.4.1.1 – Corpo-de-prova95
4.6.4.1.2 – Agentes Divergentes
4.6.5 – Análises tomográficas97
4.6.5.1 – Diver-Flu 198
4.6.5.1.1 - Discussão dos resultados do ensaio Diver-
Flu 1104
4.6.5.2 – Diver-Flu 4105
4.6.5.2.1 – Discussão dos resultados do ensaio Diver-
Flu 4110
4.6.5.3 – Diver-Flu CS111
4.6.5.3.1 - Discussão dos resultados do ensaio Diver-
Flu CS116
4.6.5.4 – Comparação entre os resultados obtidos pelos
ensaios116
4.7 – Análise quantitativa da área de invasão pelo agente divergente117
4.7.1 – Subtração do fluido Diver-Flu CS118
4.8 – Reconstrução 3D (tridimensional) do ensaio Diver-Flu CS123
4.9 – Resultados dos ensaios de dano e remoção de dano126
4.10 – Análise quantitativa da área de invasão do agente divergente137
4.11 – Reconstrução 3D (tridimensional)149
4.12 - Microfluorescência de raios X utilizando luz síncrotron153
4.12.1 – Amostras de rocha e fluido155
4.12.2 – Preparação do fluido com marcação dos polímeros155
4.12.3 – Preparação das amostras polidas de rocha156
4.13 – Resultados obtidos com a µSRXRF159
4.13.1 – Cálculo das concentrações por fluorescência de raios X:
Análise quantitativa167

4.14 – Resultados de invasão obtidos por análise dimensional	168
CAPÍTULO 5 – CONCLUSÕES E RECOMENDAÇÕES	
5.1 – Conclusões	170
5.2 – Recomendações	173
REFERÊNCIAS BIBLIOGRÁFICAS	174
REFERÊNCIAS BIBLIOGRÁFICAS UTILIZADAS	СОМО
CONSULTA	184
ANEXOS	187
Anexo A - Cálculo das concentrações por fluorescência de raio	s x: análise
quantitativa	187
Anexo B – Análise dimensional e fator de escala	192
B.1 – Determinação da escala linear	
Anexo C – Trabalhos publicados	
C.1 – Trabalhos completos em eventos internacionais	194
C.2 – Trabalhos completos em eventos nacionais	195
C.3 – Participações em projetos de pesquisa	196
C.4 – Prêmios e patentes	

LISTA DE FIGURAS

FIGURA

Figura 3.1 – Esquema ilustrativo da técnica de tomografia computadorizada23
Figura 3.2 – Sistema de raios X convencional24
Figura 3.3 – Esquema de uma ampola de raios X26
Figura 3.4 – Espectro contínuo de Roentgen28
Figura 3.5 – Espectro de um tubo de raios X29
Figura 3.6 – Espalhamento de um fóton em um ângulo θ , por unidade de ângulo
sólido (dΩ)
Figura 3.7 – Coeficiente de atenuação de massa do iodeto de sódio35
Figura 3.8 – Esquema ilustrativo representando o efeito Compton
Figura 3.9 – Importância relativa dos três mais importantes tipos de interação de
raios X. As linhas mostram os valores de Z e hv para o qual os dois efeitos vizinhos
são justamente iguais
Figura 3.10 – Esquema ilustrativo representando o efeito fotoelétrico37
Figura 3.11 –Representação do objeto real em um método iterativo43
Figura 3.12 – Representação dos domínios espacial e de freqüência do teorema da
fatia de Fourier44
Figura 3.13 – Transformada de Fourier de projeções realizadas em diferentes
ângulos45
Figura 3.14 - (A) Representação gráfica de dois perfis de um objeto retangular e,
(B) retroprojeção destes perfis sobre o plano de imagem, sobrepondo-se para
formar uma aproximação do objeto original46
Figura 3.15 - Convolução\retroprojeção filtrada. Perfis filtrados são
retroprojetados para reconstruir o objeto original47
Figura 3.16 – Representação de uma função filtro inverso ideal48
Figura 3.17 – A primeira geração de tomógrafos50
Figura 3.18 – A segunda geração de tomógrafos51
Figura 3.19 – A terceira geração de tomógrafos52
Figura 3.20 – A quarta geração de tomógrafos53
Figura 3.21 – Perfil do Imatron CT-100 – Cirn CT Scanner54

Figura 3.22 – Tomógrafo de quinta geração (Imatron CT-100 – Cirn CT
Scanner)54
Figura 3.23 – Tomógrafo de sexta geração55
Figura 3.24 - Representação 3D de uma amostra cilíndrica de arenito (8mm
diâmetro56
Figura 3.25 - Representação de um modelo semi-empírico do elétron Auger60
Figura 3.26 – Métodos de dispersão dos raios X característicos61
Figura 3.27 – Representação esquemática da Lei de Bragg62
Figura 3.28 – Diagrama μ-XRF64
Figura 3.29 – Arranjo experimental64
Figura 4.1 – Tomógrafo de quarta geração Picker-PQS do Cenpes/Petrobras67
Figura 4.2 – Célula de interação rocha-fluido para arenitos inconsolidados68
Figura 4.3 – Sistema de compactação68
Figura 4.4 – Colocação da célula de interação rocha-fluido no sistema de
compactação69
Figura 4.5 – Colocação da haste utilizada na compactação do primeiro estágio69
Figura 4.6 – Colocação do corpo externo70
Figura 4.7 – Montagem final do sistema de compactação para o primeiro
estágio70
Figura 4.8 – Colocação da haste fina71
Figura 4.9 – Esquema de colocação do sistema de compactação do segundo
estágio71
Figura 4.10 – Detalhes da célula de interação rocha-fluido destacando seus
detalhes (patente 0305956-1)72
Figura 4.11 - Aspecto final da célula de interação pronta para realização dos
ensaios74
Figura 4.12 – Montagem do sistema de vácuo78
Figura 4.13 – Conexão dos tubos do sistema de vácuo a célula de interação rocha-
fluido79
Figura 4.14 – Sistema de injeção baixa vazão alta pressão80
Figura 4.15 – Diagrama do simulador81
Figura 4.16 - Imagens da mesma seção obtidas com diversos algoritmos de
reconstrução

Figura 4.17 - Imagens de seções com diferentes espessuras da mesma região do
corpo-de-prova
Figura 4.18 - Piloto da célula antes da colocação da areia de gravel85
Figura 4.19 – Areia compactada antes da formação do reboco e colocação da areia
de gravel
Figura 4.20 – Seções transversais do corpo-de-prova antes da formação de reboco e
colocação de areia de gravel87
Figura 4.21 - Piloto da célula após formação do reboco e colocação da areia de
gravel
Figura 4.22 – Imagem da primeira seção após a formação de reboco e colocação da
areia de gravel
Figura 4.23 – Seções transversais do corpo-de-prova após a formação do reboco e
colocação da areia de gravel90
Figura 4.24 – Perfil tomográfico da primeira seção91
Figura 4.25 – Imagem tridimensional do reboco formado por fluido de perfuração
visto posição 1 (parte anterior)92
Figura 4.26 – Imagem tridimensional do reboco formado por fluido de perfuração
visto em um outro ângulo diferente da posição 192
Figura 4.27 – Imagem tridimensional do reboco formado por fluido de perfuração
visto na posição 2 (parte posterior)93
Figura 4.28 – Imagem tridimensional do reboco formado por fluido de perfuração
visto em um ângulo diferente da posição 293
Figura 4.29 – Esquema de compactação das camadas de areia96
Figura 4.30 - Célula de dano posicionada na mesa do tomógrafo97
Figura 4.31 - Sistema de bombeamento conectado à célula de dano98
Figura 4.32 - Imagem piloto com o posicionamento das seções transversais para o
ensaio DIVER-FLU 199
Figura 4.33 - Imagens transversais do ensaio DIVER-FLU 1 no tempo 0100
Figura 4.34 - Imagens transversais do ensaio DIVER-FLU 1 no tempo 1101
Figura 4.35 - Imagens transversais do ensaio DIVER-FLU 1 no tempo 2102
Figura 4.36 - Imagens transversais do ensaio DIVER-FLU 1 no tempo 3103
Figura 4.37 - Imagem piloto com o posicionamento das seções transversais para o
ensaio DIVER-FLU 4105
Figura 4.38 - Imagens transversais do ensaio DIVER-FLU 4 no tempo 0106

Figura 4.39 - Imagens transversais do ensaio DIVER-FLU 4 no tempo 1107
Figura 4.40 - Imagens transversais do ensaio DIVER-FLU 4 no tempo 2108
Figura 4.41 - Imagens transversais do ensaio DIVER-FLU 4 no tempo 3109
Figura 4.42 - Imagem piloto com o posicionamento das seções transversais para o
ensaio DIVER-FLU CS111
Figura 4.43 - Imagens transversais do ensaio DIVER-FLU CS no tempo 0112
Figura 4.44 - Imagens transversais do ensaio DIVER-FLU CS no tempo 1113
Figura 4.45 - Imagens transversais do ensaio DIVER-FLU CS no tempo 2114
Figura 4.46 - Imagens transversais do ensaio DIVER-FLU CS no tempo 3115
Figura 4.47 - Diferença entre as imagens adquiridas entre o tempo 1 e 0 (DIVER-
FLU 1)118
Figura 4.48 - Diferença entre as imagens adquiridas entre o tempo 2 e 0 (DIVER-
FLU CS)119
Figura 4.49 - Diferença entre as imagens adquiridas entre o tempo 3 e 0 (DIVER-
FLU CS)
Figura 4.50 - Gráfico apresentando a evolução da área invadida em cada tempo do
ensaio DIVER-FLU 1121
Figura 4.51 - Gráfico apresentando a evolução da área invadida em cada tempo do
ensaio DIVER-FLU 4122
Figura 4.52 - Gráfico apresentando a evolução da área invadida em cada tempo do
ensaio DIVER-FLU CS123
Figura 4.53 - Instantâneo da reconstrução 3D do ensaio DIVER-FLU BJ no tempo
0124
Figura 4.54 - Instantâneo da reconstrução 3D do ensaio DIVER-FLU BJ no tempo
1124
Figura 4.55 - Instantâneo da reconstrução 3D do ensaio DIVER-FLU BJ no tempo
2125
Figura 4.56 - Instantâneo da reconstrução 3D do ensaio DIVER-FLU BJ no tempo
3125
Figura 4.57 – Imagem piloto com posicionamento das seções transversais para o
ensaio126
Figura 4.58 – Seções transversais adquiridas antes da injeção do agente
divergente127

Figura 4.59 – Seções transversais adquiridas após 5 min de injeção do agente
divergente128
Figura 4.60 – Seções transversais adquiridas após 10 min de injeção do agente
divergente129
Figura 4.61 – Seções transversais adquiridas após 15 min de injeção do agente
divergente130
Figura 4.62 – Seções transversais adquiridas após 10 min de óleo mineral OB-
9132
Figura 4.63 – Seções transversais adquiridas após 20 min de óleo mineral OB-
9
Figura 4.64 – Seções transversais adquiridas após 30 min de óleo mineral OB-
9134
Figura 4.65 – Seções transversais adquiridas após 60 min de óleo mineral OB-
9134
Figura 4.66 – Seções transversais adquiridas após 90 min de óleo mineral OB-
9136
Figura 4.67 – Gráfico apresentando a evolução do valor médio de atenuação de
raios X ao longo do meio poroso137
Figura 4.68 – Quantificação após 5 minutos de injeção do agente divergente138
Figura 4.69 – Quantificação após 10 minutos de injeção do agente divergente139
Figura 4.70 – Quantificação após 15 minutos de injeção do agente divergente140
Figura 4.71 – Quantificação após 10 minutos de injeção do óleo mineral OB-09.141
Figura 4.72 – Quantificação após 20 minutos de injeção do óleo mineral OB-09.142
Figura 4.73 – Quantificação após 30 minutos de injeção do óleo mineral OB-09.143
Figura 4.74 – Quantificação após 60 minutos de injeção do óleo mineral OB-09.144
Figura 4.75 – Quantificação após 90 minutos de injeção do óleo mineral OB-09.145
Figura 4.76 – Evolução da área invadida em cada tempo do ensaio na etapa de
injeção do agente divergente148
Figura 4.77 – Evolução da remoção da área invadida em cada tempo do ensaio de
injeção de óleo mineral OB-9148
Figura 4.78 – Instantâneo da reconstrução 3D do ensaio após 5 minutos de injeção
do agente divergente149
Figura 4.79 – Instantâneo da reconstrução 3D do ensaio após 10 minutos de
injeção do agente divergente150

Figura 4.80 - Instantâneo da reconstrução 3D do ensaio após 15 minutos de
injeção do agente divergente150
Figura 4.81 – Instantâneo da reconstrução 3D do ensaio após 5 minutos de injeção
do de óleo mineral OB-9151
Figura 4.82 - Instantâneo da reconstrução 3D do ensaio após 10 minutos de
injeção de óleo mineral OB-9151
Figura 4.83 - Instantâneo da reconstrução 3D do ensaio após 20 minutos de
injeção de óleo mineral OB-9152
Figura 4.84 – Instantâneo da reconstrução 3D do ensaio após 30 minutos de
injeção de óleo mineral OB-9152
Figura 4.85 – Instantâneo da reconstrução 3D do ensaio após 40 minutos de
injeção de óleo mineral OB-9153
Figura 4.86 – Espectro típico de fluorescência de raios X µSRXRF de um arenito
inconsolidado154
Figura 4.87 – Esquema da estrutura do complexo iodo-polímero156
Figura 4.88 – Plugue de rocha congelado em nitrogênio líquido157
Figura 4.89 – Colocação do plugue cortado em moldes de alumínio158
Figura 4.90 – Câmara de vácuo158
Figura 4.91 – Politriz computadorizada159
Figura 4.92 – Aspecto da lâmina polida mostrando a área danificada e preservada
do arenito inconsolidado160
Figura 4.93 – Aspecto da lâmina após o ensaio de dano mostrando a área
danificada– área 1160
Figura 4.94 – Aspecto da Lâmina mostrando a área não danificada - área
2161
Figura 4.95 – Gráfico de invasão dos polímeros marcados no fluido de perfuração
sem CaCO ₃ – Fundo 1162
Figura 4.96 – Gráfico de invasão dos polímeros marcados no fluido de perfuração
sem CaCO ₃ – Centro 1162
Figura 4.97 – Gráfico de invasão dos polímeros marcados no fluido de perfuração
sem CaCO ₃ – Superior 2163
Figure 4.98 – Aspecto do perfil de invasão – Fluido drill-in polímeros marcados
sem CaCO ₃ (três regiões)164

Figura 4.99 – Gráfico de invasão de um fluido de perfuração com agente obturante
e polímeros marcados – Fundo164
Figura 4.100 – Gráfico de invasão de um fluido de perfuração com agente
obturante e polímeros marcados – Centro 1165
Figura 4.101 – Gráfico de invasão de um fluido de perfuração com agente
obturante e polímeros marcados –Superior 1166
Figura 4.102 – Aspecto do perfil de invasão – Fluido drill-in polímeros marcados e
CaCO ₃ (três regiões)166
Figura 4.103 – Gráfico das concentrações de polímeros e agente obturante região
de injeção de fluido167
Figura 4.104 – Gráfico das concentrações de polímeros e agente obturante região
central167
Figura 4.105 – Gráfico das concentrações de polímeros e agente obturante região
de saída de fluido168